

M.Sc. Degree BIOINFORMATICS (CHOICE BASED CREDIT SYSTEM)

OUTCOME BASED EDUCATION (OBE) LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (LOCF)

SYLLABUS (Effective from the academic year 2023 - 2024)

VISION STATEMENT

The vision of the College is to build a vibrant and inclusive learning community in a culture of excellence sustained by a sound value system that promotes responsible citizenship and effects social change.

MISSION STATEMENT

The mission of the College is to empower young women to face the challenges of life with courage and commitment, to be builders of a humane and just society, and to promote a learning community in which all, especially those from less privileged backgrounds, feel part of the collaborative high quality educational process which is value based and leads to holistic growth.

EDUCATIONAL OBJECTIVES OF THE INSTITUTION

- To offer a globally relevant curriculum and promote academic excellence, equipping graduates with a comprehensive understanding of their domain of study, leading to research and innovation
- To promote professional skill development and entrepreneurship, empowering graduates to achieve professional excellence, employability, entrepreneurship and leadership qualities
- To provide a vibrant and inclusive teaching-learning environment where graduates are imbued with a strong desire for academic growth and become lifelong learners
- To contribute towards nation building by fostering in graduates a respect for values, ethics and diversity
- To be environmentally conscious and sustainable, inspiring graduates to fulfil their social and civic responsibilities

POSTGRADUATE PROGRAMME OUTCOMES (POS)

On successful completion of the Programme, postgraduates will

PO 1	acquire in-depth and advanced knowledge in their chosen field of study,
	encompassing relevant theories, concepts, methodologies, and research findings.
PO 2	demonstrate competency in research and writing, with intellectual independence
	for critical enquiry/scientific reasoning, problem solving and innovative thinking.
PO 3	synthesise their domain knowledge with that of other relevant disciplines, to meet
	the challenges of higher studies/academia/work, in local and global contexts.
PO 4	display proficiency in communication and academic writing for coherent,
	contextual and independent exposition of knowledge and ideas.
PO 5	demonstrate enhanced professional and entrepreneurial skills, and the ability
	for life-long learning.
PO 6	use relevant digital/technological skills, and display leadership traits and
	creativity to contribute individually or collaboratively in local, national and
	global contexts.
PO 7	engage sensitively with a range of socio-cultural and ethical issues, and use
	their disciplinary knowledge in contributing to environmental causes and
	sustainable development.
PO 8	display self-awareness, attitudes of inclusivity, and effectively engage in a
	multicultural society with respect for democracy, peace and diversity.

DEPARTMENT OF BIOINFORMATICS

PROGRAMME DESCRIPTION

The M.Sc. programme in Bioinformatics at Stella Maris College was started in the year 2002. The programme gives a strong interdisciplinary foundation to Biology and Informatics with courses like Molecular Biology, and ensures adequate Programming skills in C++, Perl, R and Python. The programme includes recent advancements and internationally demanding research cum job courses like Next Generation Sequencing Data Analysis, Big Data Analysis and Molecular Modeling and Computer Aided Drug Design. Other courses like Data Mining, Algorithms, Clinical Research Management and Systems Biology cover not only the theoretical aspects of the field, but also the practical essentials of Bioinformatics. The Summer Internship is an integral part of the course, and is done at the end of the first year where the students intern in reputed institutions such as IGIB, IBAB, NCBS, IIT-M, IISc, etc., where they are involved in live projects, and acquire hands-on experience in both wet lab and dry lab techniques, learn work ethics as well. The students are encouraged to choose their area of interest and work under the guidance of the faculty for their Master's Dissertation during the fourth semester.

VISION OF THE DEPARTMENT

• To be recognised as a distinctive Centre for Bioinformatics and build an informed community of purpose driven Bioinformatics professionals with social responsibility, accountability and integrity

MISSION OF THE DEPARTMENT

- To provide insight for students in the field of Bioinformatics
- To prepare the students to handle Big-Data conducive to transform human health and wellness
- To empower young women in STEM by providing necessary technological skills to handle biological, chemical data, integrate multiomics, develop drugs and perform clinical research
- To encourage students to start Bioinformatics start-ups and enhance entrepreneurial skills with social concern

PROGRAMME SPECIFIC OUTCOME (PSO)

On successful completion of the M.Sc. Bioinformatics programme, the students will be able to:

PSO 1	Attain a strong foundation of the interdisciplinary sciences including computer science,
	biosciences, mathematics, chemistry and physical sciences
PSO 2	Develop programming skills, interpret biological information computationally and
	evolve into a professional with integrated skills from multiple fields
PSO 3	Analyse omics data, evaluate the experimental raw data to infer molecular models and
	contribute to personalised medicine
PSO 4	Establish proficiency in handling huge biological data using software and standardised
	data analysis pipelines to address the present scientific challenges
PSO 5	Cultivate and strengthen the ability to develop accelerated and precise technologies in
	resolving the biological, environmental and health care problems

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 DISTRIBUTION OF CREDITS AND HOURS

Courses	Semester 1		Semester 2		Semester 3		Seme	ester 4	Total	Total
	С	Н	С	Н	С	Н	С	Н	Credits	Hours
	4	5	4	5	4	5	4	5	16	20
PC	4	6	4	5	4	5	4	5	16	21
rC	4	5	4	5	4	5	4	5	16	20
	4	5							4	5
DC Practical					2	3			2	3
r C Flactical			2	3	2	3			4	6
Dissertation							5	8	5	8
PE-dept.	5	5	5	5			5	5	15	15
PE-Common			3	3	3	3			6	6
PV			2	2	2	2			4	4
РК			2	2					2	2
РА	2	2							2	2
PN					2				2	0
Library		2				4		2		8
TOTAL	23	30	26	30	23	30	22	30	94	120

M.Sc. Bioinformatics 2023-2024

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI 600 086 **M.Sc. DEGREE: BIOINFORMATICS COURSES OF STUDY** (Effective from the academic year 2023-2024) CHOICE BASED CREDIT SYSTEM

C-Credit, L-Lecture Hours, T-Tutorial Hours, P- Practical Hours, Ex-Exam Hours,											
CA-	CA- Continuous Assessment Marks, ES-End Semester Marks, M-Maximum Marks										
Subject Code	Title of Course	С	L	Т	Р	Ex	CA	ES	Μ		
	SEMESTER-I										
23BI/PC/BM14	Biomolecules and Biochemistry	4	4	1	0	3	50	50	100		
23BI/PC/EB14	Essentials of Bioinformatics	4	4	0	2	3	50	50	100		
23BI/PC/CP14	Programming in C++ and Perl	4	3	0	2	3	50	50	100		
23BI/PC/DB14	Database Management Systems	4	3	0	2	3	50	50	100		
	PA/PL										
	Department Elective I										
	SEMESTER-II										
23BI/PC/MB24	Molecular Biology	4	4	1	0	3	50	50	100		
23BI/PC/GT24	Genomics and Transcriptomics	4	3	0	2	3	50	50	100		
23BI/PC/PR24	Python and R Programming	4	4	1	0	3	50	50	100		
23BI/PC/P122	Python and R Programming - Practical	2	0	0	3	3	50	50	100		
23BI/PK/SS22	Soft Skills	2	2	0	0	-	50	-	100		
CD / ET	Value Education										
	Department Elective II										
	Common Elective I										
	SEMESTER-III										
23BI/PC/PM34	Proteomics and Metabolomics	4	3	0	2	3	50	50	100		
	Machine Learning, Deep Learning and					-					
23BI/PC/MA34	Artificial Intelligence	4	4	1	0	3	50	50	100		
	Molecular Modeling and Computer Aided				0	_	50	50	100		
23BI/PC/MC34	Drug Design	4	4	1	0	3			100		
	Molecular Modeling and Computer Aided	_	0	0	<u> </u>	-			100		
23BI/PC/P232	Drug Design - Practical	2	0	0	3	3	50	50	100		
23BI/PC/P332	Molecular Biology - Practical	2	0	0	3	3	50	50	100		
23BI/PN/SI32	Summer Internship										
CD / ET	Value Education										
	Common Elective II										
	SEMESTER-IV										
23BI/PC/AB44	Applied Bioinformatics	4	4	1	0	3	50	50	100		
23BI/PC/BD44	Big Data Analysis	4	4	1	0	3	50	50	100		
23BI/PC/SM44	Systems Biology	4	4	1	0	3	50	50	100		
23BI/PC/DS45	Dissertation	5	0	0	8	0	50	50	100		
	Department Elective III										
Postgraduate El	ective Courses Offered to Parent Departmen	t									
23BI/PE/CG15	Cell Biology and Genetics	5	4	1	0	3	50	50	100		
23BI/PE/BS15	Biomathematics and Biostatistics	5	4	1	0	3	50	50	100		
23BI/PE/RM15	Research Methodology, Bioethics and IPR	5	4	1	0	3	50	50	100		
23BI/PE/IM15	Immunoinformatics	5	4	1	0	3	50	50	100		
23BI/PE/CR15	Clinical Research Management	5	4	1	0	3	50	50	100		
23BI/PE/SB15	Structural Bioinformatics	5	4	1	0	3	50	50	100		

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI 600 086 M.Sc. DEGREE: BIOINFORMATICS COURSES OF STUDY (Effective from the academic year 2023-2024) CHOICE BASED CREDIT SYSTEM

C-Credit, L-Lecture Hours, T-Tutorial Hours, P- Practical Hours, Ex-Exam Hours,												
CA-	CA- Continuous Assessment Marks, ES-End Semester Marks, M-Maximum Marks											
23BI/PE/AL15Algorithms for Bioinformatics541035050												
Postgraduate Elective Courses Offered to Other Departments												
23BI/PE/IB23	Introduction to Bioinformatics	3	3	0	0	3	50	50	100			
23BI/PE/AP23	Applications of Bioinformatics	3	3	0	0	3	50	50	100			
23BI/PE/CD23	Computer Aided Drug Design	3	3	0	0	3	50	50	100			
The Department	t will offer one Social Awareness Course											
Social Awarenes	S											
23BI/PA/RD12	Rights of Differently Abled	2	2	0	0	-	50	-	100			
23BI/PA/CR12	Child Rights	2	2	0	0	I	50	-	100			
23BI/PA/CA12	Civic Awareness	2	2	0	0	-	50	-	100			
23BI/PA/HW12	Health and Wellbeing	2	2	0	0	I	50	-	100			
23BI/PA/LC12	Learning from Communities	2	2	0	0	I	50	-	100			
23BI/PA/RR12	Rural Realities	2	2	0	0	I	50	-	100			
23BI/PA/SE12	Social and Economic Issues	2	2	0	0	I	50	-	100			
23BI/PA/UR12	Urban Realities	2	2	0	0	I	50	-	100			
23BI/PA/SZ12	Care of Senior Citizens	2	2	0	0	I	50	-	100			
Independent Ele	ective Courses											
23BI/PI/TB24	Translational Bioinformatics	4	0	0	0	3	0	100	100			
23BI/PI/JV24	Java for Bioinformatics	4	0	0	0	3	0	100	100			

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

BIOMOLECULES AND BIOCHEMISTRY

CODE: 23BI/PC/BM14

CREDITS: 4 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to acquire the knowledge on structure, function and metabolism of biomolecules
- to understand the enzyme kinetics and techniques used in biomolecules analytical purpose
- to foster the fundamental understanding on how the structures of biomolecules and their interactions lead to cell function and malfunction
- to understand the physical and chemical properties of molecules and their state of occurrence in biological system
- to undertake investigations and to perform analysis in order to obtain required information for solving the biological problems

COURSE LEARNING OUTCOMES

On successful completion of the course, student will be able to

COs	DESCRIPTION	CL							
CO1	define the structure, function, concepts of Biomolecules and relate the	K1, K2							
	importance of the biomolecules								
CO2	illustrate the intricacies of metabolic pathways and inculcate effective	K3							
	reasoning capability								
CO3	demonstrate the importance of enzymes and enzyme kinetics to inter-relate	K4							
	their role in normal vs diseased condition								
CO4	interpret the primary to highly complex structures of protein and its folding	K5							
	mechanisms in evaluating the research questions								
CO5	examine the nature of biomolecules, xenobiotics and the applications of	K6							
	various analytical techniques								
	CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create								

UNIT	CONTENT	CL	Hrs	СО
1	Introduction to Biomolecules		15	1-5
	1.1. Biomolecules - Structure and functions of Atoms and	K1-K4		
	Molecules			
	1.2. Chemical bonds - Covalent and non-covalent	$V \rightarrow V \epsilon$		
	interactions, acid base concept and buffers, pH, water	К2-КЭ		
	- properties and its importance			
	1.5. Bioenergeucs - Thermodynamics systems - laws of thermodynamics entropy and enthalpy concepts of	K3-K6		
	free energy			
2	Carbohydrates, Lipids and Nucleic acid		15	1-5
	2.1. Structures, types and Functions of Carbohydrates	K1-K4		
	2.2. Structure, types and function of Lipids and nucleic acids	K2-K5		
	2.3. Carbohydrate and Lipid metabolism – Glycolysis,	110 116		
2	Glycogen metabolism, TCA cycle, β -oxidation	K3-K6	15	1 7
3		17.1 17.4	15	1-5
	3.1. Structures and properties of amino acids, Peptide bonds,	K1-K4		
	alsuiphide bridges and other conformations.	$V \rightarrow V \epsilon$		
	3.2. Protein structure levels- primary, secondary, tertiary, quaternary. Ramachandran plot.	К2-К5		
	3.3. Protein folding pathways, classifications of proteins.	K3-K6		
4	Enzymes and Enzyme Kinetics		10	1-5
	4.1 Nomenclature, Classification of enzymes, Enzyme	K1-K4		
	specificity, Cofactors, Coenzyme and Prosthetic group			
	4.2 Enzyme Kinetics, Michaelis-Menten Equation,			
	significance of Vmax and Km, Enzyme inhibition Competitive and non-competitive Inhibition, Feedback inhibition. Enzyme regulation. Allosteric modulation.	K2-K5		
	4.3 Extraction and purification of enzymes, Immobilized			
_	enzymes, Application of enzymes in medicine and industry	K3-K6	15	1.5
5	Xenobiotics and Analytical Techniques	17.1 17.4	15	1-5
	5.1. Xenobiotics and general detoxification methods in the	K1-K4		
	body.			
	5.2. Principles, types and applications of Spectroscopy,			
	and applications	K2-K5		
	5.3. Mass Spectrometry for protein and peptide analysis,			
	MALDI-TOF Analyser, Tandem Mass Analyser, The			
	Ion Trap Mass Analyser, Q-TOF Instrument	K3-K6		

BOOKS FOR STUDY

Victor W.Rodwell, David Bender, Kathleen M.Botham, Peter J.Kennelly, P.Anthony Well, Harper's Illustrated Biochemistry, McGraw Hill / Medical; New York,USA, 32nd ed., 2022. David L.Nelson, Michael M.Cox, Lehninger Principles of Biochemistry, W H Freeman & Co; New York, USA, 8th ed., 2021. Thomas. E. Creighton, Proteins: Structures and molecular properties, W. H. Freeman, New York, USA, 2018. Narayanan P. Essentials of Biophysics Mumbai, India: Anshan Ltd; 2nd ed., 2010.

BOOKS FOR REFERENCE

Champe, Pamela C, Richard A. Harvey and Denise R. Ferrier. Lippincott's Illustrated Reviews: Biochemistry, India: J.P. Brothers Medical Publishers, Philadelphia, 7th ed., 2016. Lubert and Stryer. Biochemistry, WH Freeman; New York, USA 9th ed. 2019. Voet, D. and Voet, G. Biochemistry, New York (USA): Wiley; 4th ed., 2010. Bengt Nolting. Methods in Modern Biophysics, Springer, Germany, 2004.

JOURNALS

Journal of Biochemistry Indian Journal of Clinical Biochemistry Biochemistry Biophysical Journal European Biophysics Journal Journal of Biophysics

WEB SOURCES

http://www.biophysics.org/Education/Careers/CareersinBiophysics/tabid/112/Default.aspx http://www.rcsb.org/pdb/101/static101.do?p=education_discussion/Looking-at-Structures/methods.html http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/MassSpec/masspec1.htm www.themedicalbiochemistrypage.org www.biochemistry.org

Pattern of Assessment

Continuou	s Assessment	•	Total Marks: 50 Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	K6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semes	ter examinati	on	Total Marks: 100	Duration: 3 hours				
Sections	Cognitive levels	Marks	Pattern					
А	K1, K2	10	10 X 1 = 10 (All questions t	to be answered, Objective type)				
В	K3, K4	20	10 X 2 =20 (Answers in ab	out 50 words)				
С	K4, K5	40	4 X 10 = 40 (Internal choic	e) Answers in about 600 words				
D	K6	30	2 X 15 = 30 (2 out of 4 que choice) Answers in about 1	stions to be answered - Open 200 words				
	Total	100						

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/BM14													
	Course	ourse Title: BIOMOLECULES AND BIOCHEMISTRY													
Course Outcomes	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)										omes				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	2	2	1	2	2	1	1	1	1	1	2	2	2		
CO 2	3	3	2	2	1	1	1	1	2	1	3	2	3		
CO 3	3	3	2	2	2	1	1	1	3	2	3	1	3		
CO 4	3	2	3	2	1	2	1	1	2	1	3	1	3		
CO 5	3	3	3	2	2	1	1	1	2	2	3	2	3		
Higl	n Correl	ation: 3		Ν	Ioderate	e Correl	ation: 2		Low (Correlat	ion: 1				

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

ESSENTIALS OF BIOINFORMATICS

CODE: 23BI/PC/EB14

CREDITS: 4 L T P : 4 0 2 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to provide an integrative approach to the understanding of both theory and practice of bioinformatics
- to apply biological concepts at different levels to study gene / protein analysis, and the proteins implicated in diseases
- to understand the evolution of the life through phylogenetic analysis
- to perform comparative sequence analysis through different alignment approach and bring the meaningful information from the aligned sequences
- to access different biological databases and retrieve the required specific information

COURSE LEARNING OUTCOMES

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL							
CO1	recognize and relate the biological databases, tools and software to be used in the interdisciplinary fields	K1, K2							
CO2	infer the required information from different databases and utilise the fundamental tools in bioinformatics analysis	K3							
CO3	compare and identify the differences in sequences to interpret their role in health and disease	K4							
CO4	perform a complete analysis of the genes and protein to provide innovative research outcomes	K5							
CO5	examine the gene, protein sequences and offer solutions to the health care problems	K6							
	CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create								

UNIT	CONTENT	CL	Hrs	CO
1	Basics of Bioinformatics		8	1-5
	 1.1. Introduction to Bioinformatics; Computers in Biology to understand Biological System; Concept of open resources in Bioinformatics. Biological databases 1.2. Concept of reference genome. Genome sequencing - human genome project- versions hg19, hg38, T2T. Role of bioinformatics in human genome projects. Other genome projects- 1000 genomes, Encode, Indian genome project. 	K1- K3 K2- K4	0	
	1.3. Browsers and visualizers- UCSC, IGV, JBrowse, the Wellcome Trust Sanger Institute (WTSI), ENSEMBL, NCBI Map viewer	K5- K6		
2	Introduction to Biological Databases	110 110	10	1-5
	2.1. Type of Databases, Public Biological Databases –. Primary Nucleotide Sequence Databases: EMBL, GenBank, DDBJ	K1, K2		
	2.2. Secondary Nucleotide Sequence Databases: UniGene, Sequence Submission Methods and Tools (Sequin, Sakura, Bankit)	K3, K4		
	2.3. Sequence Retrieval Systems (Entrez & SRS); Sequence File Formats and Conversion Tools.	K5, K6		
3	Introduction to Sequence Alignment		10	1-5
	3.1. Protein and nucleotide alignment, Homology, Similarity, Identity, Pairwise alignments: Dot Plots, Scoring Matrix-PAM, BLOSUM, Gap Penalty	K1, K2		
	3.2. Dynamics programming - Alignment Algorithms: Global Sequence Alignment: Needle man-Wunsch Algorithm. Local Sequence Alignment: Smith –Waterman Algorithm. Rapid, Heuristic Versions of Smith Waterman: FASTA	K3, K4		
	3.3. Basic Local Alignment Search Tool - BLAST Search Steps, Search Strategy, E Value, Raw Scores and Bit Scores, Ensembl BLAST, TIGR BLAST, PSI-BLAST	K5, K6		
4	 Multiple Sequence Alignment and Phylogeny 4.1. Definition of Multiple Sequence Alignment. Tools of Multiple Sequence Alignment Programs and their algorithms - Clustal, Phylip, MAFT, Hidden Markov Models 	K1, K2	12	1-5
	4.2. Evolutionary analysis, Relationship of Phylogenetic Analysis to Sequence Alignment, Genome Complexity. Bootstrap, Tree Construction Methods. Neighbor-Joining Method, Unweighted Pair Group Method with Arithmetic Mean (UPGMA)	K3, K4		
	4.3. Character based methods: Maximum Parsimony Method and Maximum-Likelihood Method	K5, K6		

UNIT	CONTENT	CL	Hrs	CO
5	Specialised databases		10	1-5
	5.1. Literature databases and biomedical databases – PubMed, OMIM, Metabolic database- KEGG, Metacyc, Reactome	K1, K2		
	 5.2. Protein domain and motif prediction. Databases and tools to infer STS, EST, CDS, ORF, Domains and motifs. Protein structure databases - PDB, SCOP, CATH. Small molecule databases - Zinc, PubChem, Drug Bank. 5.3. Homology paralogy vanalogy orthology COC databases Plant and 	K3, K4		
	Animal databases. Model organism databases - SGD, MGD, ZFIN	K5, K6		
	Practical Component		15	
	Primary Nucleotide Sequence Databases: NCBI, EMBL, DDBJ Protein Sequence Databases – PIR, RefSeq, UniProt Protein Structure Databases – PDB, CATH, SCOP	K1- K2,		1-5
	Protein Visualization Tools- Rasmol, Swiss PDB Viewer, PyMol Small molecular databases - PubChem, zinc, Drug Bank Genome browsers - UCSC, ENSEMBL, ENCODE, IGV	K3 - K4		
	Basic Local Alignment Search Tool (BLAST), Pairwise and Multiple Sequence Alignment Tools: EMBOSS, Clustal W and Clustal Omega Phylogenetic Tree Construction Tool: MEGA Software, Phylip, MAFT	K5 - K6		

BOOKS FOR STUDY

Lesk, Arthur M. Introduction to Bioinformatics. OUP Oxford; USA 5th ed., 2019.

David W.Mount. Bioinformatics Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, US; 2nd ed., 2004.

Pevsner, Jonathan. Bioinformatics and Functional Genomics. Wiley publications, New York, USA, 3rd ed., 2015.

Baxevanis, Andreas, D. and Francis B.F. Ouellette, Bioinformatics- A Practical Guide to the Analysis of Genes and Proteins. Wiley publications, New York, USA, 2nd ed., 2004.

BOOKS FOR REFERENCE:

Chen and Yi-Ping Phoebe. Bioinformatics Technologies. Springer, Germany 2005.

Durbin, R., S. Eddy, A. Krogh and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Oxford, USA, 2005.

Higgins, Des and Willie Taylor. Bioinformatics –Sequence, Structure and Databanks – Practical Approach. Oxford University Press, USA, 2001.

Richard Blum, Linux Command Line and Shell Scripting Bible, Wiley, New York, USA, 3rd ed., 2021.

Baldi, P. and Brunak, S. Bioinformatics: Machine Learning Approach. MIT Press, Cambridge, US 2003.

JOURNALS

BMC Bioinformatics Bioinformatics Journal of Bioinformatics and Computational Biology Journal of Biomedical Informatics Journal of Integrative Bioinformatics

WEB RESOURCES

http://bioinformaticsweb.net/tools.html https://www.bits.vib.be/index.php/training/122-basic-bioinformatics http://bioinformaticssoftwareandtools.co.in/ http://www.genscript.com/tools.html

Pattern of Assessment

Continuous Assessment:			Total Marks: 50	Duration: 90 minutes	
Sections	Cognitive levels	Marks	Pattern		
Theory					
А	K1, K2	5	5 X 1 = 5 (All questions to be answered, Objective type)		
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)		
С	K5, K6	10	$2 \times 5 = 10$ (Internal choice) Answers in about 500 words		
Practical					
А	K3, K4	10	2 X 5 = 10 (All questions to	be answered)	
В	K5, K6	10	$1 \ge 10$ (All questions to be answered)		
	Record & Viva	5			
	Total	50			

Other Components:

Total Marks: 50

I					
Categories of other components	Cognitive levels	Course Outcome	Marks allocation		
Quiz/MCQs, open book tests/ Tests	K1 - K2	CO1-CO2	20		
	K3 - K4	CO3-CO4	20		
	K5 - K6	CO5	10		
	Total		50		

End semester examination			Total Marks: 100	Duration: 3 hours
Sections	Cognitive levels	Mark allocation	x Pattern on	
Theory				
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type	
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)	
С	K5, K6	20	$4 \times 5 = 20$ (Internal choice) Answers in about 500 words	
Practical				
А	K3, K4	20	$2 \times 10 = 20$ (All questions t	to be answered)
В	K5, K6	20	$2 \ge 10 = 20$ (All questions to	b be answered)
	Record & Viva	10		
	Total	100		

Mapping of Course Outcomes (COs)

to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/EB14											
	Course Title: ESSENTIALS OF BIOINFORMATICS												
Course Outcomes	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)				omes			
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	1	2	3	1	1	3	1	1	3	3	2	1	3
CO 2	3	1	3	1	3	1	2	1	3	2	3	2	2
CO 3	3	2	3	2	1	2	2	1	1	1	3	3	3
CO 4	3	2	3	2	2	3	3	1	2	1	3	3	3
CO 5	3	1	3	2	2	1	2	1	3	3	3	3	3
High Correlation: 3Moderate Correlation: 2						Low (Correlat	ion: 1					

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

PROGRAMMING IN C++ AND PERL

CODE: 23BI/PC/CP14

CREDITS: 4 L T P : 3 0 2 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to facilitate the students in gaining programming skills.
- to enable the students to design and execute C++ and perl scripts
- to interpolate biological demands through programming
- to provide fundamentals on using programming languages for editing the dna and protein sequences
- to utilize bioperl modules to build a pipeline and process biological data

COURSE LEARNING OUTCOMES

On successful completion of the course, student will be able

COs	DESCRIPTION	CL				
CO1	explain the basics of programming to handle multitudes of data	K1, K2				
CO2	relate the necessity for programming in handling high volumes of data	K3				
	from various fields of science					
CO3	solve biological problems with c++ and perl scripts	K4				
CO4	apply programing to analyse genomic, proteomic sequences and	K5				
	structure to aid innovative research solutions					
CO5	elaborate use of bio-perl in precisely solving complex problems in	K6				
	bioinformatics					
CL – Cognitive Level						
K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	CO
1	 Introduction to Programming language 1.1. Machine/Assembly Language, Higher Level Languages, Simple and Compound Data, Code: Syntax and Semantics 1.2. Programming in C++: C++ Characteristics, Tokens, Keywords, Identifiers and Constants, Basic Data Types, User Defined Data Types, Derived Data Types, Expressions and Control Structures. 	K1- K3 K2 – K4	8	1-5
	 1.3. Functions and Variables: Scope, Declaration and Definition, Arrays and Strings in C++. 	K4- K6		
2	 Object Oriented Programming 2.1. Using Objects, Classes, Encapsulation, Inheritance, Abstraction and Polymorphism. Friend functions 2.2. String and file operations– creating string objects, Standard 	K1, K2 K3, K4	10	1-5
	 Streams – string and Files, Open, close, EOF, updating files and error Handling 2.3. String manipulation- String operators Manipulating String, String characteristics, Comparing and Swapping 	K5, K6		
3	Introduction to Perl Programming3.1. Introduction, Statements and Declarations, DefaultVariable, Expressions, Statements, Operators in Perl, Control Structures	K1, K2	10	1-5
	3.2. Variable Types and Data types– Scalar, Arrays, Hashes. Functions- split, join, length, lcfirst, ucfirst, index and exists	K3, K4		
	3.3. Creating Regular Expressions-Characters, Character Classes, Alternative Match Patterns, Quantifiers, Assertions, Back References, Modifiers and Translator	K5, K6		
4	 Subroutines and File Handling 4.1. Subroutines- Defining Subroutines, Returning Values, Using Arguments 4.2. Files- Overview and working with File handles, Closing the files printing renoming files 	K1, K2 K3, K4	12	1-5
	 4.3. Various Ways of Opening a Perl File Handlers- Normal Scalar variable, Use Perl IO, Open the Standard Input and Standard Output, Use Sysopen (). 	K5, K6		
5	 Bioperl 5.1. Introduction to Bioperl: Installation Procedures, Architecture, Uses of Bioperl 5.2. Modules of bioperl- seq, seqio, alignio, db 5.3. Modules of Bioperl – Annotation, location, tools 	K1, K2 K3, K4 K5, K6	10	1-5

UNIT	CONTENT	CL	Hrs	CO
	Practical components	K1, K2	15	1-5
	C++			
	Find the area and circumference of a circle	K3, K4		
	Armstrong Number	V5 V6		
	Prime Number	KJ- KU		
	An example with classes and object	K1 - K4		
	Checking for palindrome of a given string (without using the	K5, K6		
	built in string function)			
	Perl Use regular expressions to modify a sequence of letters in sentences Convert DNA to RNA (transcription) Translate the given RNA sequence Calculate the frequency of bases			
	Bioperl			
	Using Bioperl retrieve a sequence from database			
	Using Bioperl Convert DNA to Protein (Translation)			
	Using Bioperl retrieve a subset of sequences, domain and motif			
	regions from the given protein sequence			

BOOKS FOR STUDY

E. Balagurusamy. Object Oriented Programming with C++. Tata McGraw- Hill, India, 8th ed., 2020. Tisdall James D. Beginning Perl for Bioinformatics. O'Reilly and Associates, US 1st ed., 2001.

BOOKS FOR REFERENCE

Conrod Bessant, Ian Shadforth and Darren Oakley. Building Bioinformatics Solutions with Perl, R and MySQL. Oxford University Press, US 1st ed., 2010.

Bjarne, Stroustrup. The C++ Programming Language. Addison Wesley, 4th ed., UK, 2013.

Holzner and Steven. Perl Black Book. Dream Tech Press, India 2nd ed., 2004.

Hubbard, John. Programming with C++, Schaum's Outline Series. Tata McGraw Hill, USA 2nd ed., 2000.

JOURNALS

C/C++ Users Journal International Journal of Computer Applications Computer Methods and Programs in Biomedicine Perl in communities

WEB RESOURCES

http://www.cplusplus.com/doc/tutorial/ http://www.cprogramming.com/ http://www.stroustrup.com/4th.html

Pattern of Assessment

Continuous Assessment:			Total Marks: 50	Duration: 90 minutes	
Sections Cognitive Marks levels		Marks	Pattern		
Theory					
А	K1, K2	5	5 X 1 = 5 (All questions to be answered, Objective type)		
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)		
С	K5, K6	10	2 X 5 = 10 (Internal choice) Answers in about 500 words		
Practical					
А	K3, K4	10	2 X 5 = 10 (All questions to be	e answered)	
В	K5, K6	10	$1 \ge 10$ (All questions to b	e answered)	
	Record & Viva	5			
	Total	50			

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs, open book tests/ Tests	K1 - K2	CO1-CO2	20
	K3 - K4	CO3-CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100	Duration: 3 hours	
Sections	Cognitive levels	Mark allocation	Pattern		
Theory					
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type		
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)		
С	K5, K6	20	$4 \times 5 = 20$ (Internal choice) Answers in about 500 words		
Practical					
А	K3, K4	20	2 X 10 = 20 (All questions to be a	answered)	
В	K5, K6	20	$2 \ge 10 = 20$ (All questions to be a	nswered)	
	Record & Viva	10			
	Total	100			

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ubject Code: 23BI/PC/CP14											
	Course	ourse Title: PROGRAMMING IN C++ AND PERL											
Course	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)									omes			
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	1	1	1	2	2	2	1	3	3	2	2	2
CO 2	3	2	1	1	2	2	1	1	3	2	2	3	2
CO 3	3	3	2	2	1	2	2	1	2	2	3	2	3
CO 4	3	3	3	2	2	2	1	2	3	3	2	2	2
CO 5	3	3	2	1	2	2	2	1	3	2	2	2	2

High Correlation: 3

Moderate Correlation: 2

Low Correlation: 1

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

DATABASE MANAGEMENT SYSTEMS

CODE: 23BI/PC/DB14

CREDITS: 4 L T P : 3 0 2 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to introduce the basic concepts of relational database management system and client / server environment
- to be trained in designing databases and manipulating them for biological applications
- to understand the working knowledge of linux environment and databases
- to familiarize the basic database storage structure and access techniques
- to apply the concepts of NoSQL and MongoDB to utilize the preferred schemas and the specific technical requirements

COURSE LEARNING OUTCOMES

On successful completion of the course, student will be able to

COs	DESCRIPTION	CL				
CO1	explain the working of different operating systems to analyse various	K1 K2				
COI	data types	K 1, K 2				
CO2	compare the data models and schemas in dbms for a variety of datasets	K3				
CO3	create entity- relationship between multiple data tables and write sql	КЛ				
COS	queries to develop databases	K4				
CO4	compare various rdbms tools, nosql databases in the context of	K5				
04	research problems	KJ				
COS	design databases using the knowledge of sql to provide feasible	K6				
005	solutions	KO				
CL – Cognitive Level						

UNIT	CONTENT	CL	Hrs	CO
1	Introduction to Files, Databases and Linux	K1, K2	8	1-5
	1.1 Introduction to File and Database systems- Record	,		
	Storage and Primary File Organization- Secondary Storage			
	Devices.	V2 V4		
	1.2. Linux basics commands. Working with Files, Text Editors,	KJ-K4		
	I/O Redirections, Pipes, Filters, and Wildcards.			
	1.3 Changing Access Rights. Bash scripting, loops, text			
	mining, Awk, sed and grep. Editors- vim, nano, gedit.	K5-K6		
2	Introduction to Database Systems	K1, K2	10	1-5
	2.1 Introduction to Database Systems, Architecture, Data			
	Models, Layers and Types of Database Management			
	Systems			
	2.2. Operations on Files- Heap File- Sorted Files- Hashing	K3-K4		
	Techniques – Index Structure for Files. Different Types of			
	Indexes- B-Tree - B+Tree. Database System Structure,			
	Data Models, database schemas.			
	2.3. Database Normalisation and denormalization for	K5-K6		
2	Relational Databases (up to BCNF).		10	1 5
3	SQL		10	1-5
	3.1. Data Definition Language, Data Manipulation Language,	K1, K2		
	I ransaction Control and Data Control Language Grant and			
	Revoke Privilege Command.	V2 V4		
	5.2. Set Operators, Joins-Kinds of Joins, Table Allases, Sub	KJ-K4		
	queries, Multiple and Correlated Sub Queries.			
	S.S. Functions-Single Kow, Date, Character, Numeric,			
	Equity Deforantial Integrity Constraints	КЭ-КО		
	Equity, Referencial integrity Constraints			
4	RDBMS and No SQL databases		12	1-5
	4.1. Text and Multimedia Databases - Basic Concepts and	K1, K2		
	Applications, Types of DBMS-Network, object oriented,			
	graph based. Overview of RDBMs, Advantages of RDBMs			
	Over DBMs.			
	4.2. Establishing relations between tables. Entity relationship	U2 U 4		
	concepts. Keys in linking relational databases - primary,	K3-K4		
	foreign, super, candidate keys.			
	4.3. Brief history of No SQL databases. Features of No SQL,			
	differences and advantages of No SQL over RDBMS.	K3-K6		
	Types and misconceptions in No SQL databases. No SQL			
5	vo DVL. Recent trends in databases	K1 K7	10	1_5
5	5.1. MongoDB, web development with MongoDR install	N 1, N 2	10	1-5
	MongoDB, shell commands			
	5.2. How can you store a DNA sequence using MongoDB?	V2 V4		
	Role of MongoDB in 1000 genomes projects, MongoDB	KJ-K4		
	or Redis for biomedical data.			
	5.3 Database file formats- JSON, BSON, Creating uniprot	NE NC		
	mongodb, querying and retrieving protein sequences.	КЭ-КО		

UNIT	CONTENT	CL	Hrs	CO
	Practical Components		15	1-5
	Linux			
	Linux- create directory, move directory, remove directory and	K1-K4		
	create files, move files, copy files			
	Linux – using wildcard characters and sort files	K5- K6		
	Linux - changing user rights			
	SQL	K1- K4		
	Create – a table and insert values using SQL			
	Create subqueries with a where clause			
	Create queries with constraints – NOT NULL and,			
	DEFAULT			
	Queries with Joins and functions	K5- K6		
	Queries with primary and foreign keys			

BOOKS FOR STUDY

Ramakrishnan Raghu and Gehrke Johannes. Database Management Systems, McGraw–Hill, UK, 3rd ed., 2002

Kristina Chodorow, Michael Dirolf, MongoDB: The definitive guide, O'Reilly Media, Inc., USA,1st ed., 2010.

Gerardus Blokdyk, NoSQL A Complete Guide, 5Starcooks, Australia, 2020.

BOOKS FOR REFERENCE

Harrison Guy, Next Generation Databases: Nosqland Big Data, Apress publishers, India, 1st ed., 2018. Anthony DeBarros, Practical SQL, No Starch Press, USA, 1st ed., 2018.

Anthony Molinaro, Robert de Graaf, SQL Cookbook, O'Reilly, USA, 1st ed., 2006.

Thomas Nield, Getting Started with SQL: A Hands-On Approach for Beginners, O'Reilly, USA, 1st ed., 2016.

Rick Copeland, MongoDB Applied Design Patterns: Practical use cases with the leading NoSQL database O'Reilly, USA,1st ed., 2013.

JOURNALS

International Journal of Database Management Systems Journal of Database Management Journal of Advanced Database Management & Systems International Journal of Intelligent Information and Database Systems

WEB RESOURCES

www.oracle.com/technetwork/oem/db-mgmt/db-mgmt-093445.html http://education-portal.com/academy/lesson/what-is-a-database-management-systempurpose-and-function.html www.odbms.org/ http://www.comptechdoc.org/os/linux/usersguide/linux_ugbasics.html http://www.dummies.com/how-to/content/common-linux-commands.html

Pattern of Assessment

Continuou	s Assessment:		Total Marks: 50	Duration: 90 minutes		
Sections Cognitive levels Marks		Pattern				
Theory						
А	K1, K2	5	5 X 1 =5 (All questions to be	e answered, Objective type)		
В	K3, K4	10	5 X 2 = 10 (Answers in abou	t 50 words)		
С	K5, K6	10	$2 \times 5 = 10$ (Internal choice) Answers in about 500 word			
Practical						
А	K3, K4	10	$2 \times 5 = 10$ (All questions to	be answered)		
В	K5, K6	10	$1 \ge 10$ (All questions to	be answered)		
	Record & Viva	5				
	Total	50				

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs, open book tests/ Tests	K1 - K2	CO1-CO2	20
	K3 - K4	CO3-CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination			al Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Mark allocation	Pattern
Theory			
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K5, K6	20	4 X 5 = 20 (Internal choice) Answers in about 500 words
Practical			
А	K3, K4	20	$2 \times 10 = 20$ (All questions to be answered)
В	K5, K6	20	$2 \times 10 = 20$ (All questions to be answered)
	Record & Viva	10	
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ubject Code: 23BI/PC/DB14											
	Course	ourse Title: DATABASE MANAGEMENT SYSTEMS											
Course Outcomes	Programme Outcomes (POs) Programme Specific Outcome (PSOs)								omes				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	1	3	1	3	3	1	2	3	3	2	3	1
CO 2	1	1	3	2	3	3	1	1	3	2	2	3	1
CO 3	3	2	3	2	3	3	2	1	2	3	3	3	2
CO 4	2	2	3	1	3	1	1	1	3	3	1	3	2
CO 5	3	2	3	2	3	3	1	1	3	3	3	3	3

High Correlation: 3

Moderate Correlation: 2 Low Correlation: 1

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023–2024)

MOLECULAR BIOLOGY

CODE: 23BI/PC/MB24

CREDITS: 4 L T P: 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to explore the structural organisation of chromosomes and genes
- to understand the general principles of genes at the molecular level of different organisms
- to acquire knowledge on dna, rna replication, mutations and transcriptional controls
- to familiarize the various levels of gene regulation and protein function
- to analyse the various genetic and molecular mechanisms involved in cancer signalling

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL					
CO1	grasp the functions of the prokaryotic and eukaryotic genome mechanisms at	K1					
	the molecular level						
CO2	represent and illustrate the structural organization of genes and the control	K2					
	of gene expression						
CO3	interpret the significance of central dogma of life	K3,K4					
CO4	relate and analyse the protein synthesis mechanism	K4,K5					
CO5	link the concepts of molecular signaling to a better understanding of diseases,	K5,K6					
	including cancer						
CL – Cognitive Level							

K1 – Remember | K2 – Understand | K3 – Apply | K4 – Analyse | K5 – Evaluate | K6 – Create

UNIT	CONTENT	CL	Hrs	CO
1	Structure and Organisation of Genes and Chromosomes		10	1-5
	1.1. DNA-Structure and Conformations, Chromosomes – Structure and Functions	K1-K3		
	1.2. Cell division - Mitosis and meiosis, Cell cycle regulation, Check points	K2-K5		
	1.3. Organisation of Genomes - Coding Sequences, Repetitive Sequences, transposons	K5-K6		

UNIT	CONTENT	CL	Hrs	CO
2	Organelle, Bacterial and Viral Genome 2.1. Mitochondrion and Chloroplast Genome - Organisation and Function	K1-K3	13	1-5
	2.2. Bacteria - Cells structure and bacterial genetics2.3. Virus - Structure, Viral genome, Viroids and Prions	K2-K5		
		K5-K6		
3	Replication and Transcription 3.1. DNA replication, Mutations, DNA damage and repair mechanisms in prokaryotes and eukaryotes	K1-K4	15	1-5
	3.2. Transcription- Eukaryotes and Prokaryotes, Transcriptional control by regulatory proteins, RNA polymerases	K2-K5		
	 3.3. Post Transcriptional Regulation - DNA Methylation, Histone modification - Capping, RNA editing, Splicing, and Polyadenylation 	K5-K6		
4	Translation 4.1. RNA- Types, structure and functions, Ribosomes – Structure and Assembly	K1-K3	12	1-5
	4.2. Translational Regulation - Regulation of gene expression in Prokaryotes (Operon) and Eukaryotes, Genetic code, Gene Silencing	K2-K6		
	4.3. Post- translational modifications of proteins	K5-K6		
5	Cell Signalling and Cancer 5.1. Cell signalling – Signalling molecules, Receptors - Hormones receptors, cell surface receptor, G-protein coupled receptors, signal transduction pathways	K1-K3	15	1-5
	5.2. Cancer Biology- Characteristics and genetic basis of cancers, Proto-oncogene, Oncogenes, Tumor Suppressor Genes	K2-K6		
	5.3. Oncogenesis - Cancer Immunotherapy, Regulation of Cell Death, Apoptosis	K5-K6		

BOOKS FOR STUDY

Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher, Hidde
Ploegh. *Molecular Cell Biology*. USA: W. H. Freeman, Eighth edition, 2016.
Wolfe, Stephen L. *Molecular and Cellular Biology*. USA: Wadsworth, 2005.
Watson, James, D. *Molecular Biology of the Gene*. USA: The Benjamin Cummings
Publishing Company, 2007.

BOOKS FOR REFERENCE

Cooper, Geoffrey M. and Robert E. Hausman. The Cell, A Molecular Approach. USA: Sinauer Associates, 2004.

Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, Hidde Ploegh and Paul Matsudaira. Molecular Cell Biology. USA: W.H.freeman, 2008.

Watson, James, D. Molecular Biology of the Gene. UK: Pearson, Seventh edition, 2017. Darnell, James, Harvey Lodish and David Baltimore. Molecular and Cell Biology, Scientific American Books, USA: W.H. Freeman, 2004.

Karp and Gerald. Cell and Molecular Biology- Concepts and Experiments, USA: John Wiley, 2013.

Lewin and Benjamin. Genes IX, UK: Oxford University Press, 2009.

Roitte, Ivan M., Brostoff, Jonathan and Male, David K. Immunology. Philadelphia: J.B. Lippi ncott, 1990.

Purvis, William K, David Sadava, Craig Heller and Gordan H. Orians. Life: The Science of Biology. USA: Sinauer, 2004.

WEB SOURCES

www.molbiolcell.org www.sciencedirect.com http://www.nature.com/scitable/topic/cell-biology-13906536 http://www.biology.arizona.edu/cell_bio/cell_bio.html http://ghr.nlm.nih.gov/

JOURNALS

Journal of Molecular Biology Molecular Biology Journal of Genetics and Genomics **BMC Cell Biology**

Pattern of Assessment

Continuous Assessment:			otal Marks: 50 Duration: 90 minutes
Sections	ons Cognitive levels Ma		Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

```
Total Marks: 50
```

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100 Duration: 3 hour
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words
D	K6	30	$2 \times 15 = 30$ (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subject Code: 23BI/PC/MB24												
	Course Title: MOLECULAR BIOLOGY												
Course OutcomesProgramme Outcomes (POs)Programme Specific Out (PSOs)									ic Outc	omes			
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	2	2	1	1	3	1	2	1	3
CO 2	3	3	3	3	3	3	2	2	3	3	3	2	3
CO 3	3	3	3	3	3	3	2	2	3	2	3	1	3
CO 4	3	3	2	2	3	2	1	1	3	2	3	1	3
CO 5	3	3	3	3	3	3	2	2	3	3	3	2	3
]	High Correlation: 3Moderate Correlation: 2Low Correlation: 1												

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

GENOMICS AND TRANSCRIPTOMICS

CODE: 23BI/PC/GT24

CREDITS: 4 L T P: 302 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to provide an insight into the complete genome sequences of a model organisms and human genome through comparative and functional genomics
- to acquaint knowledge on functional genomics techniques such as microarrays, est, sage and interpret data obtained through high throughput expression studies
- to provide hands on experience of handling the genomic datasets
- to obtain and analyse information and data relating to specific genes, next generation sequencing tools and next generation mapping portals
- to instill students to utilize bioinformatic pipelines for the characterization and quantification of RNAs and annotations at the genome level and make new discoveries

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL			
CO1	acquaint the fundamental concepts of genome sequencing, file formats and	K1			
	data analysis				
CO2	perform powerful computational and statistical methods to decode the	K2			
	functional information hidden in DNA and RNA sequences				
CO3	experiential knowledge on Next generation sequencing and gene editing	K3			
	techniques				
CO4	exploit the mechanisms of genomics and transcriptomics to deal with the	K4			
	growing demand for multiomics				
CO5	apply functional genomics techniques to analyse data from biological	K5, K6			
	system				
	CL – Cognitive Level				
K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create					

UNIT	CONTENT	CL	Hrs	CO
1	Genome Sequencing and Sequence File Formats 1.1. Understanding a Genome sequence, Locating the genes in a Genome Sequence, Genome Sequencing	K1- K3		
	 1.2. Next generation sequencing technology- Whole Genome Shotgun Sequencing, Exome and amplicon sequencing, Genome assembly, Comparative Genomics 1.3. File formats- FASTQ, SAM/BAM, VCF, GFF/GTF, and BED_Databases and tools_Variations at the Level of 	K2– K4	8	1-5
	individual Nucleotides, Duplications, Indels, Rates and patterns of Nucleotide substitution, Molecular Clocks	K5- K6		
2	Epigenetic and Metagenome sequence analysis2.1. Genome variant analysis- GATK pipeline, concepts of genome wide association studies (GWAS)	K1, K2		
	2.2. Metagenome analysis- amplicon and shotgun metagenome, Alpha and Beta diversity, rarefaction curves and metrics, Logical steps for metagenome analysis, Taxonomical classification- silvaDB, green genes	K3, K4	10	1-5
	2.3. Epigenomics, Local chromatin dynamics and epigenetic modifications, analysis of regulatory sequence motifs, transcription factor - DNA interaction	K5, K6		
3	Genome Editing 3.1. Genome editing technologies - Clustered regularly interspaced short palindromic repeats (CRISPR) CAS 9 technology, Variants of CAS 9 nuclease, selection of	K1, K2		
	 3.2. Guide RNA design, recognition sequences, Best practices in SgRNA design, Repair and data analysis of the edited genome, Therapeutic applications. 3.3. Targeted mutagenesis- Transcription activator-like 	K3, K4	10	1-5
4	effector nuclease (Talens), Zinc Finger Nuclease (ZFNs) Technology. Recent innovations in genome editing in agriculture, diseases and healthcare	K5, K6		
4	 4.1. Transcriptomics - microarray technology and gene expression, SAGE, Applications of Microarrays in Medicine, Databases - GEO, array express 	K1, K2		
	4.2. Next generation Sequencing -RNA isolation and purification, RIN number. Bulk RNA sequencing, single-cell RNA sequencing, small RNA sequencing	K3, K4	12	1-5
5	4.3. Importance of gene silencing, miRNA, siRNA, lncRNA, competing endogenous RNA	K5, K6	10	1.5
5	 5.1. Data analysis- Quality check- fastqc, multi fastqc and trimming of adapters – trimmomatic, cutadapt 5.2. Generation of contigs and scaffolds- Assembly using 	K1, K2	10	1-5
	genome assemblers and alignment of sequences, Samtools and bowtie	K3, K4		
	DEGs and ontology analysis, Statistics behind DGE analysis. Gene annotations and protein interaction network prediction	K5, K6		

UNIT	CONTENT	CL	Hrs	CO
	Practical Component Genome databases of plants, animals and pathogens, Gene Prediction by ORF analysis, Gen scan, UCSC Genome Browser DNA markers - dbSNP, EST Clustering databases - DBEST, UNIGene, Epigenetic data analysis, EWAS atlas, PWM and DNA binding motifs- signature logo generation Command line SRA download, fastqc, trimmomatic and assembly GATK pipeline. Metagenomics - In silico -Mg RAST, Kaiju web server, Galaxy server	K1- K2 K3 - K4	15	1-5
	Differential gene expression analysis –RNA seq, microarray datasets- volcano plot, heatmap, DEGs and annotations – Geo2R, Biojupies. Small RNA network- using cytoscape, Crispr – sg RNA design- Chop Chop	K5 - K6		

BOOKS FOR STUDY

Head, Steven R., Ordoukhanian, Phillip, Salomon, Daniel R, Next Generation Sequencing Methods and Protocols, Germany, 1st ed., Springer, 2018

Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong, RNA-seq Data Analysis: A Practical Approach, UK, 1st ed., Taylor and Francis publishers, 2014

Arthur Lesk M. Introduction to Genomics. New York, 3rd ed., Oxford university press, 2017. Leland Hartwell, Michael L. Goldberg and Janice Fischer. Genetics: From Genes to Genomes. USA, 6th ed., McGraw-Hill Publishing Company. 2017

BOOKS FOR REFERENCE:

Vijai Singh, Pawan K.Dhar, Genome Engineering via CRISPR-CAS9 system, 1st ed., Academic Press Inc., 2020.

Jiaqian Wu, Transcriptomics and Gene regulation, 1st ed., Springer, 2016.

Muniyandi Nagarajan, Metagenomics: Perspectives, Methods and Applications, USA, 1st ed., Academic Press, 2017.

JOURNALS

Genome Research Genome medicine Genomics, Proteomics & Bioinformatics Journal of Data Mining in Genomics & Proteomics Human Genomics and Proteomics Journal of Proteomics and Genomics

WEB RESOURCES

http://www.oncolink.org/resources/article.cfm?id=326 http://www.nature.com/nature/journal/v422/n6928/full/nature01510.html https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678780/ https://crisprtx.com/gene-editing/crispr-cas9

Pattern of Assessment

Continuous Assessment: Total Marks: 50 Duration: 90 minutes	
---	--

Sections	Cognitive levels	Marks	Pattern
Theory			
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 = 10 (Answers in about 50 words)
С	K5, K6	10	2 X 5 = 10 (Internal choice) Answers in about 500 words
Practical			
А	K3, K4	10	2 X 5 = 10 (All questions to be answered)
В	K5, K6	10	$1 \ge 10$ (All questions to be answered)
	Record & Viva	5	
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs, open book tests/ Tests	K1 - K2	CO1-CO2	20
	K3 - K4	CO3-CO4	20
	K5 - K6	CO5	10
	Total		50
End semester examination			al Marks: 100 Duration: 3 hours
--------------------------	------------------	-----------------	--
Sections	Cognitive levels	Mark allocation	Pattern
Theory			
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K5, K6	20	4 X 5 = 20 (Internal choice) Answers in about 500 words
Practical			
А	K3, K4	20	$2 \times 10 = 20$ (All questions to be answered)
В	K5, K6	20	$2 \ge 10 = 20$ (All questions to be answered)
	Record &Viva	10	
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	bubject Code: 23BI/PC/GT24											
	Course	Course Title: GENOMICS AND TRANSCRIPTOMICS											
Course Outcomes			Progra	mme O	utcome	es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2	3	2	3	3	1	1	2	1	3	3	3
CO 2	3	2	3	1	3	3	1	2	2	2	3	3	3
CO 3	2	2	3	3	3	2	2	2	2	2	3	3	3
CO 4	3	3	3	2	3	3	1	2	2	3	3	3	3
CO 5	3	2	3	2	3	3	1	2	3	3	3	3	3
]	High Correlation: 3 Moderate Correlation: 2 Low Correlation: 1												

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023–2024)

PYTHON AND R PROGRAMMING

CODE: 23BI/PC/PR24

CREDITS: 4 L T P: 410 **TOTAL TEACHING HOURS: 65**

OBJECTIVES OF THE COURSE

- to demonstrate how to locate and download files for data analysis involving genes • and transcriptomes
- to select datasets, open files and pre-process data using python and r language
- to develop and write python and r scripts to replace missing values
- to write r scripts to normalize data, discretize data, and sample data
- to use biopython and bioconductor packages to analyze biological data

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL						
CO1	relate the necessity for programming in biology	K1						
CO2	handling biological concepts with python and r scripts	K2						
CO3	apply r and python programming to analyze genomic sequences	K3						
CO4	gain efficient programming skills to handle missing values and impute values	K4						
	in data							
CO5	perform genomic data analysis and visualize them using python and r	K5, K6						
CL – Cognitive Level								
	K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create							

UNIT	CONTENT	CL	Hrs	CO
1	Introduction to Python			
	1.1. Installation of Python and Jupyter notebooks	K1		
	1.2. Variables- list, tuples, sets, dictionary, matrix, dataframe.	120 124	12	1-5
	handling strings, Functions, control structures, operators,	K2-K4		
	Pandas, Numpy and Scipy			
	1.3. Fasta files, Parsing DNA and protein information, Gene			
	locations splices, extracting all gene locations. Object			
	Oriented Programming in Python. Constructors, Type(),	K4-K6		
	Issubclass(), Super()			

UNIT	CONTENT	CL	Hrs	CO
2	 Biopython 2.1 Getting started and installation of modules and packages, Coding DNA, proteins, extracting translations. 2.2 Modules- Bio Import, Bio Seq, Bio Align 2.3 Plot ABI traces, Retrieve and Annotate Entrez gene 	K1-K3 K3-K4 K5-K6	12	1-5
3	 Data Visualization 3.1 Getting Started with Pandas, Matplotlib, scki-kit learn. 3.2 Visualisation using Matplotlib and scikit learn – Line Plots-Scatter Plots-Visualizing Errors-Density and Contour Plots-Histogram, Binnings and Density -Customizing Color Bars. 3.3 Customising Plot Legends -Multiple Subplots-Text and Annotation-Customizing Ticks. 	K1-K3 K5-K6 K4-K6	15	1-5
4	 R programming 4.1 R as a statistical Calculator, Creating Objects and Assigning Values. 4.2 Vectors, matrices, factors, levels, dataframes. 4.3 Graphics: Simple Plotting, Advanced Plotting - ggplot, Using Color in Plots. Using Subscripts and Superscripts in Graph Labels, Interactive Graphics, Saving Graphical Output, Loops. 	K1 K2-K4 K5-K6	13	1-5
5	 Bioconductor 5.1 Introduction, Bioconductor Packages, Bio strings, Biomart 5.2 Bioconductor packages for protein- protein interaction graphs, gene variation packages, genomic ranges, genomic alignments, genomic annotations. 5.3 Biomedical data science in R- BioML(R). Data wrangling with Tidyverse and shiny 	K1-K3 K2-K4 K5-K6	13	1-5

BOOKS FOR STUDY

Robert Gentleman, *R programming for Bioinformatics*, CRC Press, 2016 Jason Kinser. *Python for Bioinformatics*. Massachusetts: Jones and Barlett Publishers, 2009. Mitchell L Model. *Bioinformatics Programming Using Python*. USA: O'Reilly Media Publication, 2009.

BOOKS FOR REFERENCE

Mark Lutz. *Learning Python.* USA: O'Reilly Media Publication, 2009. Martin C Brown. *Python: The Complete Reference*. Osborne: McGraw-Hill Media, 2001 Gentleman R, Carey V.J, Huber W, Irizarry, RA, and Dudoit, S. *Bioinformatics and Computational Biology Solutions Using R and Bioconductor*. New York: Springer, 2008.

WEB SOURCES

www.sthurlow.com/python/ www.learnpython.org www.codecademy.com/en/tracks/python https://docs.python.org/2/tutorial/ www.pyschools.com/ http://cran.r-project.org/doc/Rnews/

JOURNALS

The Python Papers Source Codes The Python Papers Anthology Python Journal The R Journal

Pattern of Assessment Continuous Assessment:

Total Marks: 50

Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	$2 \times 10 = 20$ (Internal choice) Answers in about 600 words
D	K6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book	K1 - K2	CO1-CO2	20
Mini projects/ Debate/	K3 - K4	CO3- CO4	20
Seminar/ Weblems	K5 - K6	CO5	10
	Total		50

End semes	ter examination		Total Marks: 100 Duration: 3 hours				
Sections	Cognitive levels	Marks	Pattern				
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type)				
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)				
С	K4, K5	40	$4 \times 10 = 40$ (Internal choice) Answers in about 600 words				
D	K6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words				
	Total	100					

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ubject Code: 23BI/PC/PR24											
	Course Title: PYTHON AND R PROGRAMMING												
Course Outcomes]	Progra	mme O	utcome	es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	2	2	2	1	3	3	3	2	2
CO 2	3	3	2	3	2	2	2	1	3	3	3	2	2
CO 3	3	3	3	3	3	2	1	1	3	2	3	2	2
CO 4	3	3	2	2	2	2	1	1	3	3	2	2	2
CO 5	3	3	3	3	2	2	1	1	3	2	3	2	3
]	High Co	rrelatio	n: 3		Mode	rate Co	rrelation	n: 2	Lo	w Corr	elation:	1	

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023–2024)

PYTHON AND R PROGRAMMING – PRACTICAL

CODE: 23BI/PC/P122

CREDITS: 2 L T P: 0 0 3 TOTAL TEACHING HOURS: 39

OBJECTIVES OF THE COURSE

- to use python and r languages for dataset retrieval and accession
- to analyze biological data using biopython and bioconductor packages
- to develop and write python and r scripts to access biological databases
- to perform normalization and discretization of sample data
- to use Python and R languages for graphical visualization of biological data

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL						
CO1	relate the necessity for programming in biology, Handling biological concepts with Python and R scripts	K1						
CO2	perform and distinguish genomic and transcriptomic data analysis	K2						
CO3	apply programing to analyze genomic sequences and process the information	K3						
CO4	gain efficient programming skills by solving biological problems	K4						
CO5	perform biological data analysis using python and R language	K5,K6						
	CL – Cognitive Level							

K1 – Remember | K2 – Understand | K3 – Apply | K4 – Analyse | K5 – Evaluate | K6 – Create

UNIT	CONTENT	CL	Hrs	CO
1	Basics of Python			
	1.1 Creating tuples, lists, sets, dataframes	K1-K3	7	1-5
	1.2 Importing Data, Data Frames, Handling Missing Data 1.3 Data visualization – volcano, PCA plot, heatmap, Object	K2-K4		
	oriented python – displaying genomic coordinates	K5-K6		
2	Biopython			
	2.1 Counting the base frequency, Plotting ABI traces, To transcribe and translate a sequence	K1-K3	8	1-5
	2.2 Biopython- using Bioseq –Sequence reading and writing, Biopython using Bio.Genbank – reading entries	K5-K6		
	2.3 Using BioALign to perform pairwise and multiple sequence alignment	K3-K4		

UNIT	CONTENT	CL	Hrs	CO
3	 Basics of R 3.1 Creating vectors, matrix, factors, list, dataframes 3.2 Plots – simple –bar, pie, line etc., 3.3. Setting up axis and labels 	K1-K4 K5-K6	8	1-5
4	 Advanced plotting 4.1 GGplot – geom point, jitter, geom bar, geom line. 4.2. PCA, heat maps, Clustering 4.3. Data analysis - Importing Data, Data Frames, Handling Missing Data 	K5-K6 K2-K4	8	1-5
5	 Bioconductor 5.1 Bioconductor packages- bioclite, Biostring, Biomart, protein -protein network graphs 5.2 Microarray data analysis – Limma/edgeR/DESEQ2 5.3 Microbiome data analysis- vegan/ phyloseq 	K1-K3 K2-K4 K5-K6	8	1-5

BOOKS FOR STUDY

Robert Gentleman, *R programming for Bioinformatics*, CRC Press, 2016 Jason Kinser. *Python for Bioinformatics*. Massachusetts: Jones and Barlett Publishers, 2009. Mitchell L Model. *Bioinformatics Programming Using Python*. USA: O'Reilly Media Publication, 2009.

BOOKS FOR REFERENCE

Mark Lutz. *Learning Python*. USA: O'Reilly Media Publication, 2009. Martin C Brown. *Python: The Complete Reference*. Osborne: McGraw-Hill Media, 2001 Gentleman R, Carey V.J, Huber W, Irizarry, RA, and Dudoit, S. *Bioinformatics and Computational Biology Solutions Using R and Bioconductor*. New York: Springer, 2008.

WEB SOURCES

www.sthurlow.com/python/ www.learnpython.org www.codecademy.com/en/tracks/python https://docs.python.org/2/tutorial/ www.pyschools.com/ http://cran.r-project.org/doc/Rnews/

JOURNALS

The Python Papers Source Codes The Python Papers Anthology Python Journal The R Journal

PATTERN OF ASSESSMENT

Continuou	s Assessment Test:	Total	Marks: 50 Duration: 90 minutes		
Sections	Cognitive levels	Marks	Pattern		
А	K3, K4	10	$2 \times 5 = 10$ (All questions to be answered)		
В	K5, K6	30	$2 \times 15 = 30$ (All questions to be answered)		
Record		5			
Viva		5			
	Total	50			

End Semester Examination: Total Marks: 100 Duration: 3 Hours

Sections	Cognitive levels	Marks	Pattern
А	K3, K4	50	5 X 10 = 50 (All questions to be answered)
В	K5, K6	30	$2 \ge 15 = 30$ (All questions to be answered)
Record		10	
Viva		10	
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/P122											
	Course	e Title:	PYTHO	ON ANI	OR PR	OGRAN	AMING	i - PRA	CTICA	L			
Course OutcomesProgramme Outcomes (POs)Programme Speci (PSOs)				e Specif (PSOs)	fic Outcomes s)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	3	2	2	1	3	3	3	2	2
CO 2	3	3	2	3	2	2	2	1	3	3	3	2	2
CO 3	3	3	3	3	3	2	1	1	3	2	3	2	2
CO 4	3	3	2	2	2	2	1	1	3	3	2	2	2
CO 5	3	3	3	3	2	2	1	1	3	2	3	2	2
I	High Correlation: 2 Moderate Correlation: 2 Low Correlation: 1												

High Correlation: 3

Moderate Correlation: 2

Low Correlation: 1

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 - 2024)

SOFT SKILLS

CODE: 23BI/PK/SS22

CREDITS: 2 L T P: 200 TOTAL TEACHING HOURS: 26

OBJECTIVES OF THE COURSE

- to empower students and create opportunities for self-development.
- to instill confidence in students to face challenges.
- to manage emotions and resolve conflicts.
- top organize activities and manage time.
- to set goals and plan ahead.

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL		
CO1	communicate with confidence and poise	K1		
CO2	accept themselves and improve on their weaknesses	K2		
CO3	work more effectively and complete activities on time	K3		
CO4	work more effectively and complete activities on time	K4		
CO5	CO5plan their future with clarity and focusK5,K6			
CL – Cognitive Level				
K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create				

UNIT	CONTENT	CL	Hrs	CO
1	Behavioural Traits			
	1.1 Self-Awareness			
	1.2 Communication Skills – Verbal and Non Verbal	K1-K6	6	1-5
	1.3 Leadership Qualities			
	1.4 Etiquette and Good Manners			
	1.5 Experiential Learning –Based on activities			
2	Team Work			
	2.1. Interpersonal Skills			1 5
	2.2. People Management	K1-K6	5	1-5
	2.3. Creative Thinking			
	2.4. Critical Thinking			
	2.5. Experiential Learning – Based on activities			

UNIT	CONTENT	CL	Hrs	CO
3	Time Management 3.1. Importance of time management 3.2. Planning and Prioritizing 3.3. Organizing skills 3.4 Action Plan		5	1-5
	3.5. Experiential Learning – Based on activities			
4	Conflict Resolution 4.1. Reasons for conflict 4.2. Consequences of conflict 4.3. Managing emotions 4.4. Methods of resolving conflicts 4.5. Experiential Learning – Based on activities	K1-K6	5	1-5
5	Career Mapping 5.1. Goal Setting and Decision Making 5.2. Career Planning 5.3. Resume Writing 5.4. Handling Interviews 5.5. Experiential Learning – Based on activities	K1-K6	5	1-5

BOOKS FOR REFERENCE

Khera. Shiv. You Can Win. New Delhi: Macmillan India, 2002. Mishra. Rajiv. K. Personality Development: Transform Yourself. New Delhi: Rupa 2004. Newstorm, John. W. and Scannell. Edward. E. Games Trainers Play: Experiential Learning.New Delhi: Tata McGraw Hill, 1980.

PATTERN OF EVALUATION Other Components: Total Marks: 50

Categories of other components	Cognitive levels	Marks allocation
Quiz/MCQs, open book tests/ Tests	K1 - K2	10
Assignment, Mini projects, Debate.	K3 - K4	20
Critique a concept/ Seminar/ Group Presentation	K5 - K6	20

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023–2024)

PROTEOMICS AND METABOLOMICS

CODE: 23BI/PC/PM34

L T P: 3 0 2 TOTAL TEACHING HOURS: 65

CREDITS: 4

OBJECTIVES OF THE COURSE

- to provide an insight into the complete proteome and metabolome map of humans
- to instill methods of protein modeling and validation
- to foster knowledge on the significance of protein interactions in disease conditions
- to acquaint knowledge on various experimental and computational techniques available for proteomic and metabolomic profiling
- to develop an understanding of the entire protein/metabolome components of a cell through analytical approaches, Data mining and other software tools

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL		
CO1	gain an insight of the basic and advanced concepts and applications of proteomics and metabolomics	K1		
CO2	understand the mechanisms of integrating proteomics and metabolomic data with the previously learnt omics techniques	K2		
CO3	apply functional genomics techniques to analyze proteome and metabolome data for biological system	K3		
CO4	deduce differential abundances in proteome and metabolome during health and disease	K4		
CO5	analyze the proteomic and metabolomic interactions in complex disease	K5, K6		
CL - Cognitive Level				
CO5	and disease analyze the proteomic and metabolomic interactions in complex disease CL – Cognitive Level Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – (K₄ K5, 1 Creat		

UNIT	CONTENT	CL	Hrs	CO
1	Proteomics		10	
	1.1. Introduction to Proteomics - Proteins structure, Organization			
	of protein structure, structural conformation of proteins,	K1-K2		1-2
	three dimensional structures of proteins.			
	1.2. Protein extraction and purification - 1D and 2D-gel			
	electrophoresis, Mass Spectrometry - ESI, MALDI, Software			0.0
	for Matching MS Data with Specific Protein Sequences,	K2-K3		2-3
	Peptide sequencing by tandem mass spectrometry			
	1.3. Preparative IEF, Protein Digestion Techniques, Protein			
	structure prediction - Elementary Description of			2.5
	Crystallography - Crystal Growth, Data Collection, Structure	К3-К6		3-3
	Solution, Refinement and Interpretation			

UNIT	CONTENT	CL	Hrs	CO
2	Computational proteomics		10	
	2.1. Protein Structure prediction - Secondary Structure	K1-K3		1-3
	Prediction, Homology modelling, Structure validation tools			
	- Ramachandran Plot, Threading and <i>ab initio</i> method,			
	Tools for Structure prediction			
	2.2. Protein structural visualization; Geometry optimization and	W2		
	Loop refinement, AI based methods- alpha fold, alpha meet	K3		3
	2.3. Proteogenomics - overview, applications and computational	K4-K6		15
	resources available			4-5
3	Protein -protein interactions		10	
	3.1. Proteomic interactions - Yeast Two-Hybrid, Mammalian	K1-K3		1-3
	Screen Methods and Co-Immuno Precipitation techniques			
	3.2. Protein-Protein Interactions, chaperones, protein misfolding			
	in diseases and protein complexes. Databases and proteomic	K3-K6		3-5
	tools			
	5.5. Post translational modifications, top down and bottom up			
	Applications of proteomics in Biomarker discovery	VAVC		5
	personalized medicine, astrobiology, paleo proteomics	К4-К0		5
4	Metabolomics		12	
-	1 Metabolite to metabolome and metabolic reactions	K1-K3	14	1-3
	importance of metabolomics and designing a metabolome	111 110		10
	study			
	4.2. Metabolomic databases and web resources, Experimental	K3-K4		3-4
	methods in metabolome generation-Plant/bacterial			
	secondary metabolites, MS based approaches, targeted and			
	untargeted metabolomics, and experimental errors.			
	4.3. Metabolomic categories - Lipidomics, Glycomics,	K4-K6		4-5
	Fluxomics, genome scale metabolic modelling	_		_
5	Computational Analysis of Metabolomics		13	
	5.1. Generation of metabolome data, over representation analysis	K1-K3		1-3
	and disease-based enrichment analysis.			
	5.2. Statistical analysis in metabolomics – univariate and			4-5
	multivariate analysis, dimensionality reduction and	K4-K6		2-3
	differential abundance of metabolomics.	V 2 V2		
	5.5. Functional annotation, Softwares and tools for metabolome	r2-r3		
	analysis - Mizime, metabolome analyst, paintomics.			

UNIT	CONTENT	CL	Hrs	CO
	Practical component		10	1-5
	Metabolic pathway database – KEGG, PharmGKB, Pubchem	K1,K2		
	Protein classification and structure analysis –Chou fasman, GOR, Procheck Protein motif and domain search – PROSITE, PDBeMotif, MASCOT	K3,K4		
	Homology modelling – Swiss model, Modeller software Secondary structure prediction – JPRED, MFOLD Protein–Protein interaction analysis – DIP, STRING, BIND, Expasy, Cytoscape	K5,K6		

BOOKS FOR STUDY

Lesk Arthur M. Introduction to Protein Science: Architecture, Function and Genomics.
New York: Oxford university press, 2016
Pennington S and M. J. Dunn. Proteomics: From Proteins Sequence to Function.
Germany: Springer Publications, 2001
Palzkill and Timothy. Proteomics. USA: Kluwer Academic Publishers, 2013.
Daniel C. Leibler. Introduction to Proteomics: Tools for New Biology. USA: Humana
Press, 2002.
Srivastava Sudhir. Informatics in Proteomics. USA: Taylor & Francis Group, 2005.

BOOKS FOR REFERENCE

Collado Vides Julio and Ralf Hofstadter. *Gene Regulation and Metabolism – Post Genomic Computational Approaches*. India: Ane Books, 2004. Dale, Jeremy W and Malcolm von Schantz. *From Genes to Genomes – Concepts and Applications of DNA Technology*. USA: John Wiley and Sons, 2012. Griffiths, A.J.F, Miller, J.H, Suzuki, D.T. Lewontin, R. C. and Gelbart, W.M. *An Introduction to Genetic Analysis*. USA: W.H. Freeman, 1996. Golemis and Erica. *Protein-Protein Interaction*. USA: CSHL, 2005.

WEB SOURCES

http://www.oncolink.org/resources/article.cfm?id=326 http://www.nature.com/nature/journal/v422/n6928/full/nature01510.html http://proteomics.cancer.gov/whatisproteomics http://www.isaaa.org/resources/publications/pocketk/15/default.asp

JOURNALS

Genomics, Proteomics & Bioinformatics Journal of Data Mining in Genomics & Proteomics Human Genomics and Proteomics Journal of Proteomics and Genomics

PATTERN OF ASSESSMENT

Continuous Assessment:		Тс	otal Marks: 50 Duration: 90 minutes
Sections Cognitive levels		Marks	Pattern
Theory			
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K5, K6	10	2 X 5 = 10 (Internal choice) Answers in about 500 words
Practical			
А	K3, K4	10	2 X 5 = 10 (All questions to be answered)
В	K5, K6	10	$1 \ge 10$ (All questions to be answered)
	Record & Viva	5	
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs, open book tests/ Tests	K1 - K2	CO1-CO2	20
	K3 - K4	CO3-CO4	20
	K5 - K6	CO5	10
	Total		50

End semes	ter examination	Tota	I Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Mark allocation	Pattern
Theory			
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K5, K6	20	4 X 5 = 20 (Internal choice) Answers in about 500 words
Practical			
А	K3, K4	20	$2 \times 10 = 20$ (All questions to be answered)
В	K5, K6	20	$2 \ge 10 = 20$ (All questions to be answered)
	Record & Viva	10	
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ubject Code: 23BI/PC/PM34											
	Course	ourse Title: PROTEOMICS AND METABOLOMICS											
Course Outcomes			Progra	mme O	utcome	es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	2	1	3	2	2	1	1	1	1	2	2	2
CO 2	3	3	2	3	2	1	1	1	2	1	3	2	3
CO 3	3	3	2	3	2	2	1	1	3	2	3	1	2
CO 4	3	3	3	3	2	1	1	1	2	1	3	1	1
CO 5	3	2	3	3	2	2	1	1	2	2	3	2	2
]	High Correlation: 3				Moderate Correlation: 2				Lo	w Corr	elation:	1	

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

MACHINE LEARNING, DEEP LEARNING AND ARTIFICIAL INTELLIGENCE

CODE: 23BI/PC/MA34

CREDITS: 4 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to provide an insight in discovering pattern in the data and to make predictions as well as to intricate patterns for solving healthcare problems
- to identify objects from large datasets and to perform complex tasks with increasing accuracy
- to identify the precise 3d geometry of biological molecules and enhance the ability of biological research for better disease diagnosis
- to annotate biological databases and retrieve the key information hidden in the data.
- to construct model in order to identify the patterns and relationships in data and apply in the AI tool development

COURSE LEARNING OUTCOMES

On successful completion of the course, student will be able to

COs	DESCRIPTION	CL				
CO1	demonstrate the fundamental knowledge on concepts of machine learning	K1, K2				
CO2	utilise the different libraries available to understand the fundamental prerequisite for ml and dl	K3				
CO3	identify the right method of classification and clustering analysis specific for the datasets	K4				
CO4	enable to build a model and examine their performance using various statistical methods by training and testing to culminate artificial intelligence	K5				
CO5	apply the ml, dl and ai concepts to solve problems in biology and medicine	K6				
CL – Cognitive Level						
K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	CO
1	Data Types and Preprocessing	K1-K4	10	1-5
	1.1. Different Forms-statistics, data mining, data analysis,			
	data science, Statistics vs. Data Mining vs. Data Analytics			
	vs. Data Science.			
	1.2. Machine Learning perspectives of data-Scales of	K2-K5		
	Measurement, data imputation, dealing with missing			
	data, normalising data, feature generation.			
	1.3. Machine Learning Categories-supervised, unsupervised,	K3-K6		
2	reinforcement learning.		15	1.5
2	Machine Learning	TT 1 TT 4	15	1-5
	2.1. Exploratory data analysis –multivariate and univariate	K1-K4		
	analysis, supervised Learning concepts- Regression,			
	2.2 Supervised Learning Classification ROC curve			
	Evaluating a Classification Model Performance SVM	K2-K5		
	SOM and KNN			
	2.3. Unsupervised learning $-$ K means. Hierarchical and	V2 V6		
	random forest, evaluation – cross fold K validation.	K3-K0		
3	Building and Evaluating Model		15	1-5
	3.1. Ensemble methods- bagging, boosting, Ensemble voting,	K1-K4		
	stacking.			
	3.2. Text mining, data assemble, Data Preprocessing (Text) -	K2-K5		
	Convert to Lowercase and Tokenize, Removing Noise,			
	Part of Speech (PoS) Tagging, Stemming,			
	Lemmatization, N-grams, Word2Vec, FastText, Glove.			
	3.3. Transformer based architecture and models, Data	K3-K6		
4	Exploration, model building and evaluation.		10	15
4	Learning and Artificial Intelligence	17.1 17.4	10	1-5
	4.1. Altificial Neural Network (ANN), fillage Recognition	K1-K4		
	Single Artificial Neuron Multilaver Percentrons			
	(Feedforward Neural Network)			
	4.2. Restricted Boltzmann Machines (RBM). Multilaver			
	Perceptrons (MLP) Using Keras, tensor flow,	K2-K5		
	Autoencoders.			
	4.3 Convolution Neural Network (CNN), Recurrent Neural			
	Network (RNN), Long Short- Term Memory (LSTM),	К3-К6		
	Transfer Learning and Reinforcement Learning			
5	Applications of ML, DL and AI		15	1-5
	5.1. ML, DL and AI in drug discovery and development	K1-K4		
	5.2. Approaches of ML, DL and AI in medical diagnosis and	120 125		
	personalized medicine	K2-K5		
	5.3. Implementation of ML, DL and AL in disease prediction			
	and prevention	K3-K6		
	and prevention	-		

BOOKS FOR STUDY

Michael Bowels, Machine Learning in Python: Essential Techniques for Predictive Analysis, Wiley publications, 2015 Andreas Muller, Introduction to Machine Learning with Python a guide for data scientists, O'Reilly, 2016 François Chollet, Deep Learning with Python, 2nd eds., Manning publications, 2021.

BOOKS FOR REFERENCE

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Third Edition, 2022 John Patterson, Deep Learning: A Practitioner's Approach (Greyscale Indian Edition), 2017 Seth Weidman, Deep Learning from Scratch: Building with Python from First Principles, O'Reilly, 2019. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016

JOURNALS

Journal of Machine Learning Research Journal of Artificial Intelligence Research Applied Artificial Intelligence International Journal on Artificial Intelligence Tools

WEB SOURCES

https://www.futurelearn.com/courses/artificial-intelligence-in-bioinformatics https://towardsdatascience.com/ai-in-bioinformatics-

a1acdc3cdd89#:~:text=AI%20in20bioinformatics%20includes%20both,as%20well%20as%2 0complex%20systems.

https://addepto.com/blog/the-role-of-machine-learning-in-bioinformatics-and-biology/

Continuou	s Assessment:	Tot	al Marks: 50 Duration:90 minutes			
Sections	Cognitive levels	Marks	Pattern			
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)			
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)			
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words			
D	K6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words			
	Total	50				

PATTERN OF ASSESSMENT

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book	K1 - K2	20	
Assignment/ Mini projects/ Debate/	K3 - K4	CO3- CO4	20
Seminar/ Weblems	K5 - K6	CO5	10
	Total	50	

End ser	mester examination		Total Marks: 100 Duration: 3 hours			
Section	ons Cognitive levels	Marks	Pattern			
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)			
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)			
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words			
D	K6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words			
	Total	100				

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/MA34											
	Course INTEL	Course Title: MACHINE LEARNING, DEEP LEARNING AND ARTIFICIAL NTELLIGENCE											
Course]	Progra	mme O	utcome	es (POs))		Prog	ramme	e Specif (PSOs)	ic Outc	omes
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	3	2	1	1	3	3	3	3	2
CO 2	3	2	3	2	3	3	2	1	3	3	3	3	3
CO 3	3	3	3	2	3	3	2	1	3	2	2	2	3
CO 4	3	2	2	3	3	3	2	2	3	2	3	2	3
CO 5	2	2	3	2	2	2	1	1	3	2	3	3	3
H	High Correlation: 3					rate Co	rrelation	n: 2	Lo	w Corr	elation:	1	

M.Sc. DEGREE BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 -2024)

MOLECULAR MODELING AND COMPUTER AIDED DRUG DESIGN

CODE: 23BI/PC/MC34

CREDITS: 4 L T P: 4 1 0 TOTAL TEACHING HOURS : 65

OBJECTIVES OF THE COURSE

- to provide clear concepts on bond angle, bond stretching, bond distance and role on different types of bonds in interactions
- to understand theoretical background to the various methods of energy minimization
- to instill molecular modelling mechanics and interaction
- to develop and understand the mechanism of drug design using computers
- to acquire knowledge on molecular dynamics and monte carlo simulations

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL					
CO1	interpret the protein structural features, minimise the energy and simulate to	K1,K2					
	attain the stability for its importance in drug action						
CO2	construct and analyse the molecular dynamics and monte carlo simulation	K2,K3					
	methods						
CO3	compare, categorise and examine the concepts of molecular interactions and	K3,K4					
	qsar studies						
CO4	determine the functional disease targets and interpret the target-ligand	K4,K5					
	interactions						
CO5	apply the knowledge towards design and development of potential lead	K5,K6					
	molecules						
	CL – Cognitive Level						
K1 –	K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	CO
1	Molecular Mechanics			
	1.1. Concepts in Molecular Modeling - Molecular	K1-K4		
	Representations, CoordinateSystems, Potential Energy	111 114	10	
	Surfaces.		10	1-5
	1.2. Molecular Mechanics, Force fields - Bond Length, Bond	K2-K4		
	Angle and Torsion angle potential			
	1.3. Non- bonded Interactions-Van der Waals and	K5-K6		
	Electrostatic Potential, Hydrogen bond interactions	K J- K 0		
2	Energy Minimization Methods			
	2.1. Energy Minimization- Derivative and Non-Derivative	V1 V4		
	Energy MinimizationMethods.	K1-K4		
	2.2. Calculation of Simple Thermodynamic Properties,		10	1-5
	Equilibration Long Pange Forces	K2-K4		
	2.3 Analyzing the Results of Simulation and Estimating	K5-K6		
	Errors.	110 110		
3	Pharmacophores			
	3.1. Molecular structures, representation – SMILES, InChi			
	keys, Chemical Fingerprint generation, Tanimoto	K1-K3		
	coefficient.		15	1-5
	3.2. Molecular structure similarity and diversity, Molecular			
	Descriptors – 1D, 2D, 3D, 4D, CoMFA, COMSIA, QSAR,	K2-K4		
	3D QSAR, ADMET prediction.	112 111		
	3.3. 3D Pharmacophore identification and mapping, Ligand-			
	based and structure based pharmacophores, Chemical	K5-K6		
	libraries, Scaffold hopping			
4	Molecular Docking			
	4.1. Drug discovery and development, computational	K1-K3	15	1-5
	approaches in drug discovery.		10	10
	4.2. Structure Dased Drug Design - Target Discovery and Validation Active Site Prediction Lead identification and	K2-K4		
	Optimization, De Novo Drug Design.			
	4.3. Molecular docking and high throughput virtual screening.	K5-K6		
5	Molecular Dynamics and Monte Carlo Simulations			
	5.1. Molecular Dynamics Using Simple Model, Molecular	K1-K4	15	15
	Dynamics with Continuous Potentials		15	1-5
	5.2 Molecular Dynamics at Constant Temperature and Pressure	V 2 V4		
	Incorporating Solvent effects into Molecular Dynamics,	⊾2-К4		
	Conformational Changes from Molecular Dynamics			
	Simulation	K5-K6		
	5.3. Monte Carlo Simulation of Molecules, Calculation of			
	Chemical Potential-Simulating Phase Equilibria by Gibbs			
	Ensemble Monte Carlo Method			

BOOKS FOR STUDY

N. Claude Cohen. *Guidebook on Molecular Modelling In Drug Design*. California: AcademicPress, 2006.
Andrew R. Leach. *Molecular Modeling: Principles and Applications*. USA: Prentice Hall,2007.
Daan Frenkel and Berend Smit. *Understanding Molecular Simulation: From Algorithms toapplications*. USA: Academic Press, 2002.
Claudio N. Cavasotto. *In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications*. USA: Taylor & Francis Group, 2017

BOOKS FOR REFERENCE

Charifson P S. *Practical Application of Computer Aided Drug Design*. New York: Dekker, 1997 Alan Hinchliffe. *Molecular Modelling for Beginners*. USA: John Wiley & Sons, 2008 Sivasamy Ramasamy. *Molecular Modeling*. India: LAMBERT Academic Publishing, 2015. Luca Monticelli, Emppu Salonen. *Biomolecular Simulations: Methods and Protocols*. USA: Humana Press, 2016.

JOURNALS

Journal of Molecular Modeling

Journal of Molecular Graphics and ModellingJournal of Computer-Aided Molecular Design Current Computer Aided-Drug Design

WEB RESOURCES

http://accessengineeringlibrary.com/browse/computer-aided-drug-design-and-delivery systems http://www.southernresearch.org/life-sciences/lead-discovery-and-optimization/medicinalchemistry/computational-chemistry

http://www.ch.ic.ac.uk/local/organic/mod/

http://www.chemcomp.com/MOE-Molecular_Modeling_and_Simulations.htm

Continuou	s Assessment:	Te	otal Marks: 50 Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 = 5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	$2 \times 10 = 20$ (Internal choice) Answers in about 600 words
D	K6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

PATTERN OF ASSESSMENT

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book	K1 - K2	CO1-CO2	20
Mini projects/ Debate/	K3 - K4	CO3- CO4	20
Seminar/ Weblems	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words
D	K6	30	$2 \times 15 = 30$ (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

Mapping of Course Outcomes (COs)

to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	bubject Code: 23BI/PC/MC34											
	Course	ourse Title: MOLECULAR MODELING AND COMPUTER AIDED DRUG DESIGN											
Course Programme Outcome						es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	3	3	2	1	3	3	3	2	3
CO 2	3	3	3	3	2	3	1	1	3	2	2	2	2
CO 3	3	3	3	3	3	3	2	1	3	3	3	2	3
CO 4	3	3	3	3	3	3	2	1	3	3	3	2	3
CO 5	3	3	3	3	3	3	3	2	3	2	3	3	3
]	High Co	rrelatio	n: 3		Mode	rate Co	rrelatio	n: 2	Lo	w Corr	elation:	1	

M.Sc. DEGREE BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 - 2024)

MOLECULAR MODELING AND COMPUTER AIDED DRUG DESIGN- PRACTICAL

CODE: 23BI/PC/P232

CREDITS : 2 L T P : 0 0 3 TOTAL TEACHING HOURS : 39

OBJECTIVE OF THE COURSE

- to provide practical experience in the analysis of protein sequences
- to instill knowledge on pharmacophore mapping
- to understand the use of informatics in drug design and development
- to identify new drug targets to treat diseases
- to gain insights on protein-ligand docking and knowledge-based scoring functions for molecular simulations

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL				
CO1	understand the importance of drug-like properties and their prediction	K1,K2				
CO2	describe the use of lead candidates and database representations	K2,K3				
CO3	in silico identification of lead molecules through molecular docking,	K3,K4				
	pharmacophore modeling					
CO4	perform the mechanics and dynamics of molecules	K4,K5				
CO5	gain practice in macromolecular simulations and perform research work in the	K5,K6				
	area of computational drug design					
CL – Cognitive Level						
K1 -	K1 – Remember K2 – Understand K3– Apply K4 – Analyse K5 – Evaluate K6 – Create					

UNIT	CONTENT	CL	Hrs	CO
1	Pharmacophore modeling Ligand Search – PubChem, Drug bank, CHEMBL, ZINC databases. Chemical drawing package – Marvin Sketch. ADME prediction – Online tools (Swiss ADME, etc.). QSAR model prediction – In Silico tools. Pharmacophore mapping.	K1-K6	8	1-5
2	Active site prediction Binding Site Identification Different approaches for binding site identification Tools - Cast-P, POCASA, 3D ligand site, Metapocket, Ghecom.	K1-K6	8	1-5
3	Molecular Docking Structure Based Drug Design-Molecular docking using AutoDock and pyrx, Discovery Studio	K1-K6	8	1-5
4	Molecular Visualisation: Pymol and Chimera, Pdb file format and Parsing Visualizing a molecule in different representations Identifying interacting residues (protein and ligand interactions) Measuring distances between atoms B- factor visualisation Image tracing and preparation. Geometry Optimization using SwissPdb Viewer Energy Minimization of protein molecule, Determining Maxima and Minima energy points	K1-K6	7	1-5
5	Molecular Dynamics Molecular dynamics using GROMACS/NAMD/ AMBER, Discovery Studio (CHARMM)	K1-K6	8	1-5

BOOKS FOR REFERENCE:

N. Claude Cohen. *Guidebook on Molecular Modelling In Drug Design*. California: AcademicPress, 2006.

Andrew R. Leach. *Molecular Modeling: Principles and Applications*. USA: Prentice Hall,2007.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to applications. USA: Academic Press, 2002.

Claudio N. Cavasotto. In Silico Drug Discovery and Design: Theory, Methods,

Challenges, and Applications. USA: Taylor & Francis Group, 2017

Charifson P S. *Practical Application of Computer Aided Drug Design*. New York: Dekker, 1997

Alan Hinchliffe. *Molecular Modelling for Beginners*. USA: John Wiley & Sons, 2008 Luca Monticelli, Emppu Salonen. Biomolecular Simulations: Methods and Protocols. USA: Humana Press, 2016.

PATTERN OF ASSESSMENT Continuous Assessment Test:

Continuous	s Assessment Test:	Total	Marks: 50 Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K3, K4	10	2 X 5 = 10 (All questions to be answered)
В	K5, K6	30	$2 \ge 15 = 30$ (All questions to be answered)
Record		5	
Viva		5	
	Total	50	

End Semest	er Examination:	Total	Marks: 100 Duration: 3 Hours			
Sections	Cognitive levels	Marks	Pattern			
А	K3, K4	50	5 X 10 = 50 (All questions to be answered)			
В	K5, K6	30	$2 \times 15 = 30$ (All questions to be answered)			
Record		10				
Viva		10				
	Total	100				

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/P232											
	Course PRAC	Course Title: MOLECULAR MODELING AND COMPUTER AIDED DRUG DESIGN- PRACTICAL											
Course Outcomes			Progra	mme O	utcome	es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	3	3	2	1	3	3	3	2	3
CO 2	3	3	3	3	3	3	2	1	3	3	3	3	3
CO 3	3	3	3	3	3	3	2	1	3	3	3	3	3
CO 4	3	3	3	2	3	2	1	1	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	1	3	2	3	3	3
H	High Correlation: 3 Moderate Correlation: 2 Low Correlation: 1												

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 -2024)

MOLECULAR BIOLOGY PRACTICAL

CODE: 23BI/PC/P332

CREDITS : 2 L T P : 0 0 3 TOTAL HOURS : 39

OBJECTIVE OF THE COURSE:

- to identify subcellular structures, organelles and understand their functions
- to provide practical experience of the various techniques involved in molecular biology and biochemistry
- to perform a range of molecular techniques used for the isolation, estimation, purification of biomolecules
- to instill practical knowledge on plant extraction and identification of secondary metabolites
- to understand the mechanism of sequencing of environmental samples through metagenomics approach

COURSE LEARNING OUTCOMES

On successful completion of the course, the student will be able to

COs	DESCRIPTION	CL					
CO1	utilize laboratory skills to enhance understanding of cell structure and	K1,K2					
	functionwhile participating in a group environment						
CO2	develop responsible conduct of laboratory skills appropriate to the	K2,K3					
	field of celland molecular biology						
CO3	apply the molecular biology techniques to biotechnological approaches	K3,K4					
CO4	perform the mechanics and dynamics of molecules	K4,K5					
CO5	gain practice in macromolecular simulations and perform research work in the	K5,K6					
	area of computational drug design						
	CL – Cognitive Level						

K1 – Remember | K2 – Understand | K3 – Apply | K4 – Analyse | K5 – Evaluate | K6 – Create

UNIT	CONTENT	CL	Hrs	CO
1	1.1. Cell Fraction and Extraction of cell organelles - Chloroplast			
	1.2. Extraction of DNA from Onion 1.3. Extraction of RNA from Yeast	K1-K6	8	1-5
2	 2.1. Estimation of DNA and RNA 2.3. Estimation of Proteins by Lowry's Method 2.3. Estimation of Mitochondria by Assessing the Marker Enzyme 	K1-K6	8	1-5

UNIT	CONTENT	CL	Hrs	СО
3	 3.1. Denaturing Proteins and Identification of Amino Acids by Thin Layer Chromatography 3.2. Amplification of DNA by PCR 3.3. Electrophoretic Techniques: Agarose Gel Electrophoresis, SDS PAGE, Southern Blotting (Demo) 	K1-K6	8	1-5
4	4.1. Plant sample extraction using solvents4.2. Identification of secondary metabolites4.3. Evaluation of secondary metabolites for therapeutic use	K1-K6	7	1-5
5	5.1. Sample collection from different environments5.2. Microbial isolation and culture techniques5.3. Metagenomics analysis	K1-K6	8	1-5

BOOKS FOR REFERENCE

Wilson, K; Walker, J. *Principles and techniques of Biochemistry and Molecular Biology*. USA: Cold Spring Harbor Laboratory Press, 2010.

Sambrook, J; Russel, DW. *Molecular Cloning*. USA: Cold Spring Harbor LaboratoryPress, 2001.

Sadasivam, S. and Manickam, A. *Biochemical Methods*. India: New Age International, 2009.

Wilson, K; Walker, J. *Principles and techniques of Biochemistry and Molecular Biology*. USA: Cold Spring Harbor Laboratory Press, Eighth edition, 2010.

Swati Agarwal, Suphiya Khan. Advanced Lab Practices in Biochemistry &

MolecularBiology. India: I K International Publishing House, 2018.

PATTERN OF ASSESSMENT

Continuous Assessment Test:

Total Marks: 50

Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K3, K4	10	$2 \times 5 = 10$ (All questions to be answered)
В	K5, K6	30	$2 \times 15 = 30$ (All questions to be answered)
Record		5	
Viva		5	
	Total	50	

End Semester Examination:

Total Marks: 100 Duration: 3 Hours

Sections	Cognitive levels	Marks	Pattern
А	K3, K4	50	5 X 10 = 50 (All questions to be answered)
В	K5, K6	30	$2 \ge 15 = 30$ (All questions to be answered)
Record		10	
Viva		10	
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/P332											
	Course	Course Title: MOLECULAR BIOLOGY-PRACTICAL											
Course Outcomes	Programme Outcomes (POs)									Programme Specific Outcomes (PSOs)			
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2	3	2	3	2	3	1	3	2	1	1	2
CO 2	3	2	3	2	3	2	3	1	3	1	2	1	3
CO 3	3	3	3	3	3	2	3	2	3	2	2	2	3
CO 4	3	3	3	2	3	3	1	1	3	3	3	2	3
CO 5	3	3	3	3	3	3	1	1	3	3	3	3	3
]	High Correlation: 3Moderate Correlation: 2							Lo	w Corr	elation:	1		

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI 600 086 M.Sc. DEGREE BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 -2024)

SUMMER INTERNSHIP

CODE: 23BI/PN/SI32

CREDITS: 2

OBJECTIVES OF THE COURSE

- to enable students to gain experiential learning in the field of bioinformatics
- to acquire hands on training in Bioinformatics Softwares

The Summer Internship program is for a minimum period of three weeks. The students are expected to have regular attendance in their respective Institutes and submit a report to the Department reporting the experiments they have observed/conducted. The students are expected to give a seminar presentation in the third semester of the work they have observed/conducted.

Guidelines for Evaluation

The maximum marks for the Summer Internship is 50 and is divided into the following:

- a) Log Book (20 Marks)
- b) Seminar presentation (15 Marks)
- c) Attendance (15 Marks)

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 -2024)

APPLIED BIOINFORMATICS

CODE: 23BI/PC/AB44

CREDITS : 4 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to explore the potentials of dietary supplements with the impact on genome, proteome and metabolome.
- to examine factors that affect drug response and the application of pharmacogenetics to drug development and drug treatment
- to empower the trait screening and marker-assisted backcrossing for the improvement of genetic merit of plant breed.
- to be aware of biodiversity importance and utilize software for identification and accessing the biodiversity databases.
- to instill knowledge on the major steps in cancer development and progression and their relationship to disease mechanisms and therapeutic strategies

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL						
CO1	apply the nutritional information to genomics and vice versa	K1						
CO2	emphasise the application of bioinformatics and biological databases for the	K2						
	development of personalized medicine.							
CO3	imbibe the genome technologies to change breeding, monitor and protect the	K3						
	wild plant population							
CO4	evaluate the red data books, biodiversity registers and to interpret their	K4						
	morphological and molecular characterization							
CO5	describe the major clinical-translational areas of research in cancer biology and	K5, K6						
	the goals of biomedical research in these areas							
CL – Cognitive Level								
]]	K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create							

UNIT	CONTENT	CL	Hrs	CO
1	Nutrigenomics		13	
	1.1. Introduction-Background & Preventive Health.	K1		1-5
	Applications -Nutrigenomics & gut health-prebiotics			
	and probiotics. Nutrition linked to genes and phenotypes.			
	1.2. Role of folate, choline, and vitamins B2, B6 and B12, in	170 170		
	gene regulation Databases -SGMD Barleybase and others	K2-K3		
	1 3 Tools-Use of BioConductor Booly	VA VG		
		K4-K0	10	1 -
2	Pharmacogenomics		13	1-5
	2.1. Introduction to Pharmacogenomics, Application and	K1-K2		
	Challenges in Pharmacogenomics, Genetic Variation,			
	Types of Variants, SNPs, Insertion/Deletions.	KA KG		
	2.2. Databases - Pharmacogenomics Knowledge Base	K4-K0		
	(PharmGKB), GWAS (Genome Wide Association			
	study).	K3-K6		
	2.3. Personalised medicine - The use of AI in personalised	110 110		
	medicine. Database-PreMedKb		10	
3	Agrigenomics	171 170	13	1-5
	3.1. Genomics application in Agriculture- The advantages and	K1-K3		
	outcomes. wheat genomics program. Seed saving			
	techniques.	K3 K1		
	3.2. Genomic breeding, genetic engineering of plants.	КЭ-К4		
	Development of high performance plants- Case study.			
	3.3. Databases of interest -Integbio, NARO- (RAP-DB), Tools-	K5-K6		
	Parentage Testing, Marker assisted backcrossing.	no no	10	1 -
4	Biodiversity Informatics	W1 W2	13	1-5
	4.1. Concepts of Biodiversity, Major drivers of biodiversity	К1-К3		
	Enderson de ministre la Endersiene end De delate ha de			
	Dia discussion and animals, Endemism and Red data books-			
	A 2 Software for identification of Accessing evicting	K3-K4		
	4.2. Software for identification of Accessing existing			
	AVIS ICTV			
	AVID, ICIV	K4-K6		
	4.5. UNEF/GEF blodiversity data management project (BDM).			
	- CBD and bloethics- General agreement on trade and			
5	Cancor Conomics		12	15
5	5.1 Carcinogenesis - chemical and physical carcinogenesis	K1-K2	15	1-5
	molecular pathways in carcinogenesis. Apoptosis and	K 1 K 2		
	cancer. Mutagens, genetic variants.			
	5.2. Databases and tools to analyse cancer data- TCGA.			
	Bioportal, GTEX, HPA, Reactome, UALCAN,	K2-K3		
	Oncomine, KM plotter, COSMIC. Kaplan meier survival			
	plots. Analysing Big Data of Cancer Genomics.			
	5.3. Application of next generation sequencing technologies in			
	diagnosis and prediction of cancer genes. Identification of			
	Methylation sites, Expression profiles, pathway analysis.	K3-K6		

BOOKS FOR STUDY

Russ B. Altman, David Flockhart, David B. Goldstein. *Principles of Pharmacogenetics and Pharmacogenomic*.UK:Cambridge University Press, 2012.

Rapley R and Harbron S. *Molecular analysis and Genome discovery*. John Willey, 2004.

Lynnette R. Ferguson, Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition, CRC Press, 2016.

KJ Gaston, Biodiversity – An introduction, 2nd ed., Wiley-Blackwell, 2003.

Graham Dellaire, Jason N. Berman, Robert J. Arceci, Cancer Genomics: From Bench to Personalized Medicine, 1st ed., Academic Press, 2013.

BOOKS FOR REFERENCE

Bryce Mendelsohn, Jeanette McCarthy, Precision Medicine: A Guide to Genomics in Clinical Practice (INTERNAL MEDICINE), Paperback,McGraw-Hill Education Raffaele De Caterina, J. Alfredo Martinez, Marin Kohlmeier, Principles of Nutrigenetics and Nutrigenomics: Fundamentals of Individualized Nutrition, Academic Press Inc., 2019.

Martin M. Zdanowicz. Concepts in Pharmacogenomics.NewYork: McGraw Hill, 2010.

JOURNALS

The Pharmacogenomics Journal American Journal of Pharmacogenomics Pharmacogenomics and Personalized Medicine Agronomy Journal Lifestyle genomics Nutrigenomics- Frontiers in Nutrition Cancer genomics

WEB RESOURCES

http://ghr.nlm.nih.gov/handbook/genomicresearch/pharmacogenomics https://www.pharmgkb.org/ http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm http://www.emolecules.com/info/molecular-informatics https://www.illumina.com/areas-of-interest/agrigenomics.html https://center-forward.org/genomics-agricultural-innovation/ http://www.pmjournal.ir/ https://www.cbioportal.org/

PATTERN OF ASSESSMENT

Continuou	s Assessment:	To	otal Marks: 50 Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	K6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Other Components:		Total Mark	s: 50
Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100	Duration: 3 hours				
Sections	Cognitive levels	Marks	s Pattern					
А	K1, K2	10	10 X 1 =10 (All questions to be an type)	swered, Objective				
В	K3, K4	20	10 X 2 =20 (Answers in about 50 y	words)				
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answerds	wers in about 600				
D	K6	30	2 X 15 = 30 (2 out of 4 questions to Open choice) Answers in about 12	o be answered - 200 words				
	Total	100						

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/AB44											
	Course	Course Title: APPLIED BIOINFORMATICS											
Course Outcomes	Programme Outcomes (POs)								Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2	3	2	2	3	2	1	3	3	3	2	3
CO 2	3	3	3	2	3	3	2	1	3	3	3	3	3
CO 3	3	3	3	3	3	2	2	1	3	3	2	2	3
CO 4	3	3	2	3	3	3	3	2	3	3	2	3	3
CO 5	3	3	3	3	3	3	3	3	3	3	3	3	3

High Correlation: 3

Moderate Correlation: 2 Low Correlation: 1

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023–2024)

BIG DATA ANALYSIS

CODE: 23BI/PC/BD44

CREDITS: 4 L T P: 410 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to develop a quantitative understanding of how data science in bioinformatics plays a role in the current decade
- to understand the various aspects of data science and applying them in health care
- to obtain adequate knowledge of machine learning approaches
- to be aware of fundamentals and the use of computing power of clusters in accessing the sheer size of biological big data
- to create a general pipeline for complex data models and control analysis in a stepby-step fashion

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL			
CO1	collect meaningful values out of big biological data	K1			
CO2	describe the big data landscape including examples of real world big data problems	K2			
CO3	identify what are and what are not big data problems and be able to recast big data problems as data science questions	К3			
CO4	apply the skills of hadoop and spark technology to solve the data science questions	K4			
CO5	create pipelines for data analysis and reusable methods	K5, K6			
CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create					

UNIT	CONTENT	CL	Hrs	CO
1	Introduction to Big data		12	1-5
	1.1. Big data -characteristics, data structures and data repositories, Example of Big Data.	K1		
	 1.2. Machine and People Generated Data and Advantages. Characteristics of big data – 6 V's 	K2-K3		
	1.3. Getting value out of big data using a 5-step process to structure your analysis.	K4-K6		
UNIT	CONTENT	CL	Hrs	CO
------	---	---------	-----	-----
2	Big data in healthcare		15	1-5
	2.1 Data Science in Biomedicine and Healthcare. Sequence	K1-K2		
	Processing, Medical Image Analysis, Natural Language			
	Processing.			
	2.2 Network Modeling and Probabilistic Modeling. Concepts of			
	Hadoop and spark, The Hadoop Distributed File System: A	K4-K6		
	Storage System for Big Data, YARN: A Resource Manager			
	For Hadoop.			
	2.3 MapReduce: Simple Programming for Big Results.			
	Introduction to Spark for big data analysis. Pyspark in Solving big data.	K3-K6		
3	Biological data analysis		13	1-5
	3.1 ChIPseq - Introduction and biological theories on ChIPseq	K1-K3		
	analysis. DNA fragment evaluation. Peak identification.			
	Two condition comparison. Saturation analysis. Motif			
	finding and related theories.			
	3.2 ATAC sequencing, Bisulfite sequencing for big biological	K3-K4		
	data.			
	3.3 Integrating Multionics big data. Seqware, distmap, read			
	annotation pipelines.	K5-K6		
4	Computer clusters		12	1-5
	4.1 Introduction to essential computing, Distributed computing			
	systems. An oversimplified, but useful, view of a computing	K1-K3		
	cluster, Essential Unix/Linux Terminal Knowledge, Clusters,			
	parallel, supercomputers, workstations, HPC.			
	4.2 Cluster computing and the job scheduler, High performance			
	computer clustering (HPCC), learning about the resources on	K3-K4		
	HPCC			
	4.3 Cloud computing - Cloud Primer, Cloud Foundations, Cloud			
	Security and Migration. Cloud services – AWS or Google	K4-K6		
_	cloud.		10	1 7
5	Workflows and pipelines	1/1 1/0	13	1-5
	5.1 Introduction to Snake make and next flow- installation, rules,	K1-K2		
	directives: input, output, shell, script, target files, best-			
	5.2 History of containers. Containers vs. virtual machines			
	Docker Concept of and the difference between Docker k	K2-K3		
	Singularity containers	112-113		
	5.3 Git and version control github learning lab git sheat sheat	K3 K6		
	and best practices, REST- API.	KJ-KU		

Teschendorff, A. E. Computational and Statistical Epigenomics. Springer Netherlands, 2015. Xiong, M. Big data in omics and imaging: Association analysis. Chapman and Hall/CRC, 2017. Ye, S. Q. Big data analysis for bioinformatics and biomedical discoveries. CRC Press, 2016.

BOOKS FOR REFERENCE

Paul Gerrard and Radia M. Johnson. Mastering Scientific Computing with R. Packt Publishing, UK, 2015.

P.P. Sinha. Bioinformatics with R Cookbook. Packt Publishing, UK, 2014.

Mandoiu, I., & Zelikovsky, A. Computational Methods for Next Generation Sequencing Data 50 Analysis, 2016.

John Wiley & Sons. Peter, D. Introductory statistics with R, 2nd ed. Springer Science & Business Media, 2015.

WEB SOURCES

https://hevodata.com/learn/top-21-hadoop-big-data-tools/ https://www.cloudxlab.com https://www.abinitio.com

JOURNALS

BMC: Big data Analytics Journal of Bigdata, Springer Big Data Research, Elseiver

PATTERN OF ASSESSMENT

Continuous	s Assessment:	Tota	I Marks: 50 Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total	50	

End semester examination			Total Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words
D	К6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/BD44											
	Course	ourse Title: BIG DATA ANALYSIS											
Course Outcomes	Programme Outcomes (POs)								Programme Specific Outcomes (PSOs)				omes
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	3	2	2	3	3	3	3	2	1	3	3	3
CO 2	3	3	3	1	2	3	2	2	3	2	2	3	3
CO 3	3	3	3	2	2	2	3	1	3	1	1	3	3
CO 4	3	3	2	1	2	3	2	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	2	2	3	3	3	3
-	High Correlation: 3					erate Co	rrelation	n: 2	Lo	w Corr	elation:	1	

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 - 2024)

SYSTEMS BIOLOGY

CODE: 23BI/PC/SM44

CREDITS: 4 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVE OF THE COURSE

- to introduce the basic concepts of systems biology
- to train the students in designing a new organism through modelling network concept and manipulating them for biological applications
- to investigate the effects and regulation of gene expression in different temporal and spatial environments
- to simulate and interpret the complex cell organelle interactions and their relations with different biological entities
- to construct novel biological parts or devices and to redesign the existing natural biological systems.

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION						
CO1	understand the principles of integrative analysis methods for biological	K1					
	system analysis and interactions.						
CO2	appreciate the model behaviour concepts	K2					
CO3	model gene expressions and integrate them with other omics	K3					
CO4	simulate the cell environments and model a cell	K4					
CO5	develop synthetic biology applications for omics	K5, K6					
CL – Cognitive Level							
K	K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	CO
1	Introduction		15	1-5
	1.1. Introduction – Systems Biology is a Living Science	K1- K3		
	1.2. Properties of Models-Model Behaviour - Model development	K2–K4		
	1.3. Systems Biology is Data Integration	K5- K6		
2	Standard Models and Approaches in Systems Biology		10	1-5
	2.1. Standard Models and Approaches in Systems Biology	K1, K2		
	2.2. Enzyme Kinetics and Thermodynamics-Metabolic Networks.	K3, K4		
	2.3. Structure of Intra- and Intercellular Communication-	V5 V6		
	Receptor- Ligand Interactions	кл, ко		
3	Modeling of Gene Expression		15	1-5
	3.1. Modeling of Gene Expression-Modules of Gene Expression – Promoter Identification - General Promoter Structure	K1, K2		
	3.2. Sequence Based Prediction of Promoter Representation of Gene	K3, K4		
	3.3. Network as Directed and Undirected Graphs, Bayesian Networks- Boolean Networks- Gene Expression Modeling with Stochastic Equations	K5, K6		
4	Integrating Networks		12	1-5
	4.1. Computer Simulation of the whole Cell. Human Erythrocyte Model and its applications. Software for Modeling, ECELL, VCELL and GROMOS.	K1, K2		
	4.2. Simulation of cellular subsystems, network of metabolites and enzymes	K3, K4		
	4.3. Signal transduction networks, Gene 5 regulatory networks, metabolic pathways: databases such as KEGG, EMP, MetaCyc, AraCyc.	K5, K6		
5	Introduction to Synthetic Biology		13	1-5
	5.1. General concepts and enabling technologies. Biological	K1, K2		
	 5.2. Part repositories DNA synthesis and assembly. Genome Editing. Controlling Gene Expression and Protein Production. 5.3. Gene synthesis and genetic engineering. Optogenetics. 	K3, K4		
	Gene therapy, Microbiome engineering, synthetic biosystems.	K5, K6		

E. Klipp, R. Herwig, A. Kowald, C. Wierling, H. Lehrach. *Systems Biology In Practice-Concepts, Implementation And Application*. Germany: Wiley-Vch Verlag Gmbh & Co.Kgaa, 2005.

Andres Kriete and Roland Eils. Computational Systems Biology. Uk: Elsevier, 2005.

BOOKS FOR REFERENCE

Uri Alon. An Introduction To Systems Biology: Design Principles Of Biological Circuits. London: Chapman & Hall/Crc, Taylor And Francis Group, 2006.
Choi And Sangdun. Introduction To Systems Biology. Usa: Humana Press, 2007.
Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, Ralf Herwig. Systems Biology: A Textbook. Uk: Wiley- Vch.Edinburgh, 2009.
Zoltan Szallasi, Joerg Stelling, Vipul Periwal. Systems Modeling In Cellular Biology. USA: Mit Press, 2006.
Najarian, K., Najarian, S., Gharibzadeh, S., & Eichelberger, C. N. (2009). Systems biology and bioinformatics: a computational approach. CRC Press

JOURNALS

Current Synthetic and Systems Biology Journal of Computer Science & Systems Biology Eurasip Journal on Bioinformatics and Systems Biology BMC Systems Biology

WEB RESOURCES

http://Sysbio.Med.Harvard.Edu/ www.Systemsbiology.Org www.Systemsbiology.Ucsd.Edu/ www.Sysbio.Org/

PATTERN OF ASSESSMENT

Continuou	s Assessment:	Tota	al Marks: 50 Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semest	ter examination		Total Marks: 100 Duration: 3 hours				
Sections	Cognitive levels	Marks	Pattern				
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type)				
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)				
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words				
D	К6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words				
	Total	100					

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PC/SM44											
	Course	Course Title: SYSTEMS BIOLOGY											
Course Outcomes	Programme Outcomes (POs)								Programme Specific Outcomes (PSOs)				omes
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	2	2	2	1	3	2	2	2	3
CO 2	3	3	2	2	3	2	1	1	2	2	3	2	3
CO 3	3	3	3	2	3	1	1	2	3	3	2	2	3
CO 4	3	3	2	2	2	1	1	1	3	2	3	3	2
CO 5	3	3	3	2	2	2	1	1	3	2	2	3	3
]	High Correlation: 3Moderate Correlation: 2								Lo	w Corr	elation:	1	

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 -2024)

DISSERTATION

CODE: 23BI/PC/DS45

CREDITS: 5

The Dissertation shall contain at least 50 pages and shall be typed with double spacing.

The format for the thesis is as follows:

- Cover page shall contain

 a) Title of the dissertation
 b) Name of the Candidate
 c) Department of Bioinformatics
 Stella Maris College (Autonomous), Chennai 86
 - d) Month, Year
- 2. The dissertation shall contain
 - a) Contents page
 - b) i. Certificate page ii. Acknowledgement page
 - c) At least 5 Chapters including an introduction, Review of Literature, Materials and Methods, Result and Discussion and Summary
 - d)List of figures / list of abbreviations (if needed) shall be given as an appendix
 - e) Bibliography shall be given in alphabetical / chronological order at the end.
- 3. Each candidate may prepare 3 hard copy and one soft copy of the thesis, one copy for her and submit 2 copies to the Head of the department 15 days before the commencement of the fourth semester examination.
- 4. The candidate may be advised that the dissertation will be valued and given credit on the criteria of
 a) Motivation towards the chosen area / formulation of the problem
 b) Methodology and Analysis
 c) Capacity to interpret the results obtained

- 5. The Controller of Examination is requested to arrange for the valuation of the Dissertation as well as the conduct of the Viva Voce at the college where the candidates take examinations, within two weeks of the last date of examination for M.Sc. Degree. The panel of examiners will consist of an external examiner and the guide. The guidelines for the Viva-Voce examinerswould be that a) They will satisfy themselves that this is a work of the candidate as certified by the department b) The thesis is in the given form and
 - c) The candidate has clear understanding of the concepts, discussed in the thesis.

PATTERN OF ASSESSMENT

Continuous Assessment:

Total Marks: 50

Periodic review 25 marks

Presentation 25 marks

End Semester Examination:

Total Marks: 100

Rubrics for Evaluation	Marks	Cognitive Level
Documentation	10	K1
Formulating topic statement	15	K2
Explaining the conceptual framework	15	K3
Textual analysis	25	K4
Research arguments	15	K5
Research conclusions & Viva	20	K6

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

CELL BIOLOGY AND GENETICS

CODE: 23BI/PE/CG15

CREDITS: 5 L T P: 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to understand the structure and function of the basic unit of life
- to gain knowledge about the cell and all its components in both prokaryotic and eukaryotic cells
- to familiarize the students with the basic concepts of genetics
- to gain the fundamentals of human genetics and hereditary
- to comprehend the cellular components underlying the cell division and inheritance of gene traits

COURSE LEARNING OUTCOMES

On successful completion of the course, student will be able to

COs	DESCRIPTION	CL				
CO1	relate the functions and the key mechanisms of cells at the molecular level to	K1, K2				
	integrate the chemical and biological points					
CO2	illustrate the structural organization of genes and the control of gene expression	К3				
CO3	explore prokaryotic and eukaryotic protein synthesis mechanisms and demarcate	K4				
	their working in various healthcare issues					
CO4	conceptualize mechanisms of signal transduction, cell cycle and cell death in the	K5				
	critical analysis of research problems					
CO5	compile the concepts of cell and molecular biology to offer precise solutions to	K6				
	complications in cancer					
	CL – Cognitive Level					
	$K_1 - Kemember K_2 - Understand K_3 - Apply K_4 - Analyse K_5 - Evaluate K_6 - Create$					

UNIT	CONTENT	CL	Hrs	CO
1	Prokaryotic and Eukaryotic cells		15	
	1.1. Introduction - Prokaryotic and Eukaryotic cell - Characteristics,	K1, K2		CO
	Similarities and differences			1-5
	1.2. Bacteria Cells - Structure, organisation and bacterial genetics	K3-K4		
	1.3. Virus - Structure, Viral Infective cycles, origin and significance,			
	Viroids and Prions	K5-K6		

UNIT	CONTENT	CL	Hrs	CO
2	Organelles			
	2.1. Structure and function of Mitochondria, Plastids (i.e.	K1, K2	10	CO
	chloroplasts), Endoplasmic Reticulum Golgi bodies, Lysosomes			1-5
	and Peroxisomes			
	2.2. DNA -Structure - conformations, Histones and Nonhistones,	К3-К4		
	Nuclear matrix and Lamins; Nuclear envelope, Pore complexes,			
	transport through the envelope			
	2.3. RNA- Types, Ribosomes – Structure, Assembly of polypeptides	K5-K6		
	on Ribosomes			
3	Cytoskeleton			
	3.1. Structure of the Cell Wall, Structure and Role of Microtubules	K1, K2	15	CO
	and Microfilaments in cells -cell-cell interactions- cell adhesion,			1-5
	tight junctions and plasmodesmata	U2 U 4		
	5.2. Introduction to Memoranes - Structure, Function, and Communication: Boles of membranes in autoryotic cells:	КЭ-К4		
	Membrane structure and composition	K5-K6		
	3.3. The Plasma Membrane - Fluid Mosaic Model	110 110		
4	Multiple alleles			
4	4 1 Human blood groups (A B AB O M N and H) and Rh factor -	K1 K2	12	CO
	Inheritance and significance	111, 112	12	1-5
	4.2. Gene Linkage and Recombination: Coupling and repulsion			15
	hypothesis Linkage in Drosophila Cytological proof of crossing	K3-K4		
	over - Example – Drosophila			
	4.3. Mapping: Locating genes along a chromosome: Two - point and	K5-K6		
	three – point crosses			
5	Cell Cycle and Karyotyping			
	5.1. Chromosomes- Structure and function, Centromeres and	K1, K2	13	CO
	Telomeres, Cell Cycle-Mitosis and Meiosis			1-5
	5.2. Karyotyping, Sex determination in Human - Barr body - Importance of V Chromosome, Klinefelters' and Turners'	K3 K1		
	Syndromes	KJ-K4		
	5.3. Inter –sexuality Linked Inheritance: Colour blindness and	K5-K6		
	Haemophilia Y -linked genes			

Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher, Hidde Ploegh. Molecular Cell Biology., W. H. Freeman-Macmillan Learning, New York, 8th ed., 2016. Peter Snustad and Michael J. Simmons, Principles of Genetics, Wiley Publications, USA, 7th ed., 2015.

Klug, William, S., Michael R. Cummings. Concepts of Genetics. Pearson Publications, USA, 12th ed., 2009.

BOOKS FOR REFERENCES

Watson, James, D. Molecular Biology of the Gene. Pearson Publications, USA, 7th ed., 2013. Hartwell L, Hood L, Goldberg M, Ann E. Reynolds, Lee Silver, Genetics: From Genes to Genomes, McGraw-Hill Education, UK, 4th ed., 2010.

JOURNALS

Journal of Molecular Biology Journal of Genetics and Genomics BMC Cell Biology

WEB SOURCES

www.cellbio.com www.molbiolcell.org www.sciencedirect.com http://www.biology.arizona.edu/cell_bio/cell_bio.html

Pattern of Assessment Continuous Assessment:

Total Marks: 50

Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	$2 \times 10 = 20$ (Internal choice) Answers in about 600 words
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book	K1 - K2	CO1-CO2	20
Mini projects/ Debate/	K3 - K4	CO3- CO4	20
Semmar/ Weblems	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	$4 \times 10 = 40$ (Internal choice) Answers in about 600 words
D	K6	30	$2 \times 15 = 30$ (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PE/CG15											
	Course	Course Title: CELL BIOLOGY AND GENETICS											
Course	Programme Outcomes (POs) Programme Specific Outcomes (PSOs)								omes				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	2	2	2	1	1	2	2	2	1
CO 2	3	3	3	2	2	2	1	1	1	2	2	1	1
CO 3	3	3	3	3	3	2	2	2	2	1	2	2	2
CO 4	3	3	3	3	3	2	2	2	2	1	1	2	2
CO 5	3	3	3	3	3	2	3	2	1	2	2	1	1

High Correlation: 3

Moderate Correlation: 2

Low Correlation: 1

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

BIOMATHEMATICS AND BIOSTATISTICS

CODE: 23BI/PE/BS15

CREDITS: 5 L T P: 410 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to enhance the skills in mathematics those are essential for learning bioinformatics
- to understand and implement various mathematical techniques being applied in analyzing information of biological data
- to understand statistical methods in its several forms is the basis of biological research
- to introduce the various statistical techniques useful for handling quantitative data
- to interpret the statistical measures reported in the scientific researches

COURSE LEARNING OUTCOMES

On successful completion of the course, student will be able to

COs	DESCRIPTION	CL			
CO1	list the importance of mathematics for research based problems	K1			
CO2	explain the different statistical tests for the research	K2			
CO3	analyse and solve aptitude based problems in competitive exams	K3, K4			
CO4	evaluate the equations and problems related to population genetics	K5			
CO5	propose the regression and correlation techniques to interpret drug activity	K6			
	based on qsar				
CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create					

UNIT	CONTENT	CL	Hrs	CO
1	Set Theory and Vectors			
	1.1. Introduction, Representation of a Set, Set Operations - Types of	K1, K2	15	1-5
	Sets, Subsets, Complement of Sets, Union and Intersection of Sets, Difference of Sets.			
	1.2. De Morgan's Law, Venn diagram, Cartesian Product of Sets.	K3-K4		
	1.3. Vectors Additions, Subtraction, Dot, Cross, Magnitude, Scalar	VE VC		
	Triple Product.	КЭ-КО		
2	Matrices, Relations and Functions			
	2.1. Matrix, Basic Operations, Transpose, Square matrices, Non	K1, K2	10	1-5
	Singular Matrices.			
	2.2. Inverse of a Matrix, Determinants, Elementary Applications.			
	2.3. Relations and Functions - Linear Function, Polynomials and	K3-K4 K5 K6		
	Differences	KJ-K0		
3	Probability			
	3.1. Rules of probability, Theorems of probability, Addition and	K1, K2	15	1-5
	Multiplication Theorem.			
	3.2. Probability distributions: Binomial distribution, Poisson	K3-K4		
	distribution, Normal distribution.	V5 V6		
	Applications.	KJ-K0		
4	Introduction to Biostatistics			
	4.1. Scope, collection, classification and tabulation, Graphical	K1, K2	12	1-5
	representation of data- measures of location and			
	dispersion - Diagrammatic and Graphical Presentation of	120 124		
	data, 1 ypes of data.	К3-К4		
	distribution Mean-Median- Mode	K5-K6		
	4.3. Measures of dispersion- Standard Deviation, Coefficient of	110 110		
	variation, Range			
5	Application and Testing			
	5.1. Sampling techniques, Sampling Distribution, Standard error,	K1, K2	13	1-5
	testing of hypotheses, Null Hypothesis.			
	5.2. Correlation - Types of Correlation-Simple, Linear and	K3 K1		
	Nonlinear- Pearson's Coefficient Correlation, Regression	KJ-K4		
	analysis- Types of Regression, Regression Equations.			
	5.3. Chi - χ^2 test, t-test, Analysis of Variance (ANOVA), Population	K5-K6		
	Genetics: Hardy-Weinberg principle.			

Lipschutz S. and Lipson, M.L. Discrete Mathematics, McGraw Hill Book Company, UK, 3rd ed., 2017.

Veer Bala Rastogi, Fundamentals of Biostatistics, Ane Books Pvt Ltd, India, 1st ed., 2009. Jae K.Lee, Statistical Bioinformatics for Biomedical and Life Science Researchers, John Wiley & Sons Publications, USA, 1st ed., 2010

Rao P. S. S. Sundar, Introduction to Biostatistics and Research Methods, Prentice Hall, India, New Delhi, 5th ed., 2012.

Narayanan S., Manicavachagam Pillay, T.K., Ancillary Mathematics- Book II, India: S. Viswanathan Printers and Publishers, India, 1st ed., 2009.

BOOKS FOR REFERENCE

Vittal, P.R. Allied Mathematics, Margham Publishers, India, 3rd ed., 2012. Papoulis, Athanasios and S. Unnikrishnan Pillai, Probability, Random Variables and Stochastic Processes, Tata McGraw Hill Pub. Co. UK, 4th ed., 2017. J. Richard, Sundar P. S. S. Rao, An Introduction to Biostatistics: A Manual for Students in Health Sciences, Prentice Hall, India, New Delhi, 3rd ed., 2004

Bernard Rosner, Fundamentals of Biostatistics, Duxbury Press, USA, 8th ed., 2010.

JOURNALS

The Journal of Mathematical Behavior Mathematical Journals The College Mathematics Journal International Journal of Mathematics and Statistics Studies

WEBSITES

http://mathworld.wolfram.com/Integral.html http://www-math.mit.edu/~djk/calculus_beginners/ http://mathworld.wolfram.com/Probability.html https://www.math.hmc.edu/calculus/tutorials/matrixalgebra/

Continuous Assessment:			Total Marks: 50	Duration: 90 minutes		
Sections	Cognitive levels	Marks	Pattern			
А	K1, K2	5	5 X 1 = 5 (All questions to be an	nswered, Objective type)		
В	K3, K4	10	5 X 2 = 10 (Answers in about 5	0 words)		
С	K4, K5	20	2 X 10 = 20 (Internal choice) A words	nswers in about 600		
D	K6	15	1 X 15 = 15 (1 out of 2 question choice) Answers in about 1200	ns to be answered - Open words		
	Total	50				

Pattern of Assessment

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100	Duration: 3 hours	
Sections	Cognitive levels	Marks	Pattern		
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type)		
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)		
С	K4, K5	40	$4 \times 10 = 40$ (Internal choice) Answers in about 600 words		
D	K6	30	2 X 15 = 30 (2 out of 4 questic choice) Answers in about 120	ons to be answered - Open 0 words	
	Total	100			

Mapping of Course Outcomes (COs)

to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ibject Code: 23BI/PE/BS15											
	Course	Course Title: BIOMATHEMATICS AND BIOSTATISTICS											
Course Outcomes]	Progra	mme O	utcome	es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	2	1	1	1	3	2	1	1	2
CO 2	3	3	3	3	3	3	1	1	3	2	1	2	2
CO 3	3	3	3	3	3	3	2	1	3	1	1	2	2
CO 4	3	3	3	3	3	3	2	2	3	2	3	2	3
CO 5	3	3	3	3	3	3	2	2	3	3	3	3	3
Higl	h Correl	ation: 3		Ν	Ioderate	Correl	ation: 2		Low (Correlat	ion: 1		

High Correlation: 3

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

RESEARCH METHODOLOGY, BIOETHICS AND IPR

CODE: 23BI/PE/RM15

CREDITS: 5 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to describe and express the role and importance of research in basic and applied sciences
- to facilitate writing of research proposals / projects and apply for grants in the field of bioinformatics
- to understand the analytical tests to be applied for research
- to comprehend the importance of intellectual property rights and bioethics to perceive in the field of research
- to decipher the regulations, national, international protocols relative to research and materials.

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL				
CO1	better understanding of the research methods	K1				
CO2	design an action plan of research	K2				
CO3	acquire skills of writing a research manuscript	K3				
CO4	application of statistical study in research	K4				
CO5	understand the ethics in writing research work	K5, K6				
CL – Cognitive Level						
K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	CO
1	Types of Data and research problem identification 1.1. Data Collection, Sources of Data- Primary, Secondary and Tertiary Sources, Sampling Methods- Probability and non-probability methods, Sample size and Sampling error.	K1- K3	15	1-5
	 Definition of Research, Types of research, Research Methodology, Principles and Practice of Research, Identifying The Research Problem. Research Design: Exploratory, Descriptive and Experimental Research Design. 	K2– K4 K5- K6		
2	Scientific Communication		12	1-5
	 2.1. Literature Review - Its Relevance and Importance in Directing Research. Citations – Types of Citations, Bibliography and End Matters, Editing and Proofreading. 	K1, K2		
	2.2. Action Plan, Design and Pilot Study undertaking a Research Project, Writing a Research grant Proposal, Format of thesis.2.3. Scholarly Communication: IMRaD concepts for papers,	K3, K4		
	and Poster and Oral Presentation, the Purpose and the Methods of Paper Critiquing.	K5, K6		
3	Writing well		13	1-5
	3.1. Writing for non- native audiences, usage of simple sentences, untangle long noun phrases, make complete sentences, Use of punctuations- comma, colon, semicolon, dash and periods, Creating non-textual information- acquiring, processing and printing illustrations.	K1, K2		
	3.2. Concepts of mind maps. Use of Encyclopedias, Research Guides, Handbook etc., Academic Databases for Computer Science Discipline, Use of tools / techniques for Research: methods to search required information effectively.	K3, K4		
	3.3. Reference Management Software like Zotero/ Mendeley, Software for paper formatting like LaTeX/MS Office, Software for detection of Plagiarism.	K5, K6		
4	Bioethics		12	1-5
	 4.1. Bioethics – Definition – Bioethics of IPR, Ethical Issues in Biotechnology, Animal Models. 4.2. Ethical issues related to embryonic stem cells, Genetic testing and screening, human clinical trials and drug 	K1, K2		
	4.3. Ethics in Scientific Writing, Plagiarism and Common Errors in Scientific Writing. Misconduct in science.	K3, K4 K5, K6		

UNIT	CONTENT	CL	Hrs	CO
5	Intellectual Property Rights		13	1-5
	5.1. Introduction of IPR, General Agreement on Trade and Tariff (GATT) and World Trade Organizations. Establishment and functions of GATT, World Trade	K1, K2		
	Organization (WTO) and World International Property			
	Organization (WIPO).	K3, K4		
	5.2. WTO Summits, Role of Integrated Business Solution Center (IBSC) and Review Committee on Genetic			
	Manipulation (RCGM), Production of Plant variety and farmers right act.	K5, K6		
	5.3. TRIPS, Different types of intellectual property rights			
	(IPR), Patents, Trade mark, Trade secret, Copyright,			
	Geographical distribution on biological diversity,			
	Obligations, Production of Traditional Knowledge,			
	Impact of GM Crops and GM Foods. Case studies on			
	Patents (Basmati, Turmeric and Neem).			

Gopalan, R. Thesis Writing. India: Vijay Nicole Imprints Private Limited, 2005. Gurumani, N. Research Methodology for Biological Sciences. India MJ Publishers, 2010. Ahuja VK., Intellectual Property Rights in India, 1st ed., Lexis Nexis publisher 2015.

BOOKS FOR REFERENCE:

Pence, G.E. Classic Cases in Medical Ethics.India: McGraw-Hill, 2004.

Kothari C R. Research Methodology, Methods and Techniques. India: Wishwa Prakashan, 2009

Radhakrishnan R and Balasubramanian S., Intellectual Property Rights, Excel Books Publishers, 2008

JOURNALS

The Journal of Communication International Association for Media and Communication Research Indian Journal of Science Communication

WEB RESOURCES

http://www.palgrave.com/studentstudyskills/page/choosing-appropriateresearchmethodologies/ https://explorable.com/research-methodology

PATTERN OF ASSESSMENT

Continuou	is Assessment:		Total Marks: 50 Duration: 90 minutes			
Sections	Cognitive levels	Marks	Pattern			
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)			
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)			
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words			
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words			
	Total	50				

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Assignment/ Mini projects/ Debate/ Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	50		

End semes	ster examination		Total Marks: 100Duration: 3 hours			
Sections	Cognitive levels	Marks	s Pattern			
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)			
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)			
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words			
D	K6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words			
	Total	100				

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ubject Code: 23BI/PE/RM15											
	Course	Course Title: RESEARCH METHODOLOGY, BIOETHICS AND IPR											
Course Outcomes			Progra	mme O	utcome	es (POs))		Programme Specific Outcomes (PSOs)				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	1	3	1	3	2	3	2	1	3	3	2
CO 2	3	3	2	2	1	1	2	2	2	2	2	2	2
CO 3	3	3	3	3	1	2	1	2	3	1	2	1	2
CO 4	3	3	3	3	2	3	1	1	2	2	3	3	3
CO 5	3	3	2	3	2	1	1	1	1	1	1	1	3
]	High Correlation: 3Moderate Correlation: 2Low Correlation: 1												

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

IMMUNOINFORMATICS

CODE: 23BI/PE/IM15

CREDITS : 5 L T P: 410 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to understand the immune system, its components and their functions
- to impart knowledge of immune responses to various pathogens
- to familiarize the structure of antigen and antibodies and its function
- to analyse the immune data by integrating genomics and proteomics approach
- to understand the application of information technology to immunology

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL					
CO1	grasp the functions of the immune system	K1,K2					
CO2	understand the application of information technology to immunology	K2,K3					
CO3	study informatics-based approaches for prediction of epitopes and immuno-diagnostic tools	K3,K4					
CO4	comprehend knowledge about computer aided vaccine design and reverse vaccinology	K4,K5					
CO5	analyse the immunological data to find computational solutions available for immunological research	K5,K6					
K1 –	CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	СО
1	 Immune System 1.1. Introduction to Immune System - Adaptive and Innate Immunity. 1.2. Cells and organs of the Immune System, Soluble Mediators of Immunity, Cell and Antibody mediated immunity. 1.3. Immune Responses - Inflammation, Immunopathology, Auto immune diseases, Vaccines 	K1-K3 K2-K4 K5-K6	10	1-5
2	 Antigens and Antibodies 2.1. Antigen types – Epitope, Affinity Maturation, Epitope mapping 2.2. Immunoglobulin classes and subclasses, Structure and Function. 2.3. Major Histocompatibility Complex (MHC) its Polymorphism, Causes for Polymorphism, MHC Supertypes, Human Leucocyte Antigen (HLA) – Types and Polymorphisms. 	K1-K3 K2-K4 K5-K6	15	1-5
3	 Computational Immunology 3.1. Computational Immunology - Databases in Immunology, dbMHC-MHC databaseat NCBI 3.2. B-cell and T-cell Epitope Prediction, T-cell epitope databases, B-cell epitope databases, SYFPEITHI MHC- presented epitopes, IEDB 3.3. IMGT International ImMunoGeneTics Information system, HLA Nomenclature and the IMGT/HLA Sequence Database 	K1-K3 K2-K4 K5-K6	10	1-5
4	 Vaccine Design 4.1. From immunome to Vaccine – Prediction of immunogenicity, Vaccine design tools. 4.2. Reverse Vaccinology and Immunoinformatics, Peptides with AntimicrobialActivity or Antibiotic Peptides. 4.3. Functional Prospecting of Genes and Transcripts, Future of Computational Modeling and Prediction Systems in Clinical Immunology 	K1-K3 K2-K4 K5-K6	15	1-5
5	 Viral Bioinformatics 5.1. Viral Bioinformatics - Computational Views of Hosts and Pathogens using VIDA. 5.2. Virus- human protein interaction databases. Virus- NCBI. GISAID database. 5.3. Virus mint, Virus host database. Viral zone- Expasy 	K1-K3 K2-K4 K5-K6	15	1-5

Darren R. Flower. *Bioinformatics forImmunomics (Immunomics Reviews)*. New York: Springer-Verlag, 2010.
Abul K. Abbas, Andrew H. H. Lichtman, and Shiv Pillai. *Cellular and Molecular Immunology* USA: Elsevier, 2017.
Andrew R. Leach, Valerie J. Gillet. *An Introduction to Chemoinformatics*.UK: Springer, 2007.

BOOKS FOR REFERENCE

Christian Schönbach, ShobaRanganathan, and Vladimir Brusic. *Immunoinformatics* (*Immunomics Reviews*) USA: Humana Press, 2010.
Kenneth Murphy. *Janeway's Immunobiology*, UK: Garland Science, 2014.
Bunin, Barry A. Dordrecht. *Chemoinformatics: Theory, Practice, and Products*.UK: Springer, 2010.

WEB SOURCES

http://www.imgt.org/Immunoinformatics.html http://rsob.royalsocietypublishing.org/content/3/1/120139 http://cheminformatics.org/ http://www.emolecules.com/info/molecular-informatics

JOURNALS

Immunoinformatics BMC Genomics Journal of Computational Biology Immunology Journal of Computational Biology

PATTERN OF ASSESSMENT

Continuous Assessment:

Total Marks: 50

Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total	•	50

End semes	ter examinati	ion	Total Marks: 100	Duration: 3 hours
Sections	Cognitive levels	Marks	Pattern	1
А	K1, K2	10	10 X 1 =10 (All questions to Objective type)	be answered,
В	K3, K4	20	$10 \ge 2 = 20$ (Answers in about	ıt 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) words	Answers in about 600
D	K6	30	2 X 15 = 30 (2 out of 4 questions) Open choice) Answers in above	ions to be answered - out 1200 words
	Total	100		

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PE/IM15											
	Course	ourse Title: IMMUNOINFORMATICS											
Course			Progra	mme O	utcome	es (POs)	Programme Specific Outcomes (PSOs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	2	2	1	2	1	2	2	1	1	3
CO 2	3	3	3	2	2	3	2	1	3	2	1	1	3
CO 3	3	3	3	3	3	3	2	1	3	3	3	2	3
CO 4	3	3	3	2	3	3	3	3	3	3	3	2	3
CO 5	3	3	3	3	3	3	3	2	3	3	3	2	3

High Correlation: 3

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086 M.Sc. DEGREE BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

CLINICAL RESEARCH MANAGEMENT

CODE: 23BI/PE/CR15

CREDITS : 5 L T P : 4 1 0 TOTAL PRACTICAL HOURS : 65

OBJECTIVES OF THE COURSE

- to give a basic understanding about clinical research
- to understand the various aspects of clinical research management
- to be conversant with the regulations in clinical management
- to compare different medical approaches and the effectiveness on groups of population
- to provide high quality data by reducing the error rate and improving the significance of research analysis

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL					
CO1	201 evaluate critical global regulatory and health care issues that challenge and influence biopharmaceutical product development						
CO2	understand the drug development process and its importance in clinical trials						
CO3	Forecast the resources necessary for regulatory submission and comprehend Fregulatory Affairs procedure in clinical research						
CO4	understand the basic statistical principles, concepts, and methods for clinical data k analysis and reporting						
CO5	demonstrate advanced critical thinking skills necessary to enhance employment opportunities or advance within the biopharmaceutical industry	K5,K6					
	CL – Cognitive Level						
K1 -	K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create						

UNIT	CONTENT	CL	Hrs	CO
1	Clinical Research			
	1.1. History of drug development - Pharmaco-epidemiology.	K1-K3		
	 1.2. Issues in Clinical Trials. Nuremberg Code, Declaration of Helsinki, InternationalConference of Harmonization and Good Clinical Practice. 1.3. Clinical trials – History of clinical trials. Stages of Clinical trials. 	K2-K4 K5-K6	10	1-5
2	Pharmacology and Drug Development2.1. Introduction to Drug Discovery and Development, Approaches, Sources of Drugs, Databases for drug	K1-K3		
	search.	K2-K4	10	1-5
	2.2. Pharmacokinetics and pharmacodynamics, Toxicological requirements	K5-K6		
	2.3. Emerging technologies in Drug Discovery, Preclinical Testing, Clinical Trials.			
3	 Regulations in Clinical Research 3.1. Evolution and History of Regulations in Clinical Research, US FDA Regulations, IND, NDA, ANDA, FDA Audits and Inspections. 3.2. European Regulatory Affairs, Organization and Functions. 3.3. INDIAN Regulatory system, Schedule Y- Rules and Regulations, Post DrugApproval Activities, PMS. 	K1-K3 K2-K4 K5-K6	15	1-5
4	 Clinical Trial Management 4.1. Role of Ethics Committees and Institutional Review Boards. Special populations; women elderly and children. 4.2. Designing of Protocol, SOP, ICF, Pharmacovigilance. 4.3. Project management Documentation, Monitoring, Audits, Inspections, Fraud and Misconduct, Roles and Responsibilities of Clinical Research Professionals. 	K1-K3 K2-K4 K5-K6	15	1-5
5	 Clinical Data Management 5.1. Importance of CDM in clinical research, Clinical Data Entry, CRF, e-CRF. 5.2. Statistical considerations at the design, analysis and reporting stage. 5.3. Data validation, SAE reconciliation, Quality Assurance 	K1-K3 K2-K4 K5-K6	15	1-5

Lori A. Nesbitt. *Clinical Research What It Is and How It Works*. UK: Jones Barlett Publishers, 2006.

Richard K. Rondel, Sheila A. Varley, Colin F. Webb. *Clinical Data Management*. UK: John Wiley, 2013.

Steven Piantadosi. Clinical Trails A Methodologic Perspective. UK: John Wiley, 2005.

BOOKS FOR REFERENCE

Russ B. Altman, David Flockhart, David B. *Goldstein Principles of Pharmacogenetics and Pharmacogenomics*. UK: John Wiley, 2012. Martin M. Zdanowicz. *Concepts in Pharmacogenomics*. UK: Mc Graw Hill, 2010.

JOURNALS

Journal of Clinical Research BioethicsPerspectives in Clinical Research Asian Journal of Pharmaceutical and Clinical Research

WEB RESOURCES

http://hub.ucsf.edu/clinical-study-management http://icmr.nic.in/ethical_guidelines http://www.niaaa.nih.gov/research/guidelines-and-resources/clinical-trial-regulationspolicies-and-guidance http://www.fda.gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/ucm155713.html

PATTERN OF ASSESSMENT

Continuous Assessment:		Γ	Cotal Marks: 50Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	Кб	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semes	ster examination		Total Marks: 100	Duration: 3 hours
Sections	Cognitive levels	Marks	Patte	ern
А	K1, K2	10	10 X 1 =10 (All questions to type)	be answered, Objective
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)	
С	K4, K5	40	4 X 10 = 40 (Internal choice) words	Answers in about 600
D	К6	30	2 X 15 = 30 (2 out of 4 quest Open choice) Answers in abo	ions to be answered - out 1200 words
	Total	100		

Mapping of Course Outcomes (COs)

to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	Subject Code: 23BI/PE/CR15											
	Course	ourse Title: BASICS OF CLINICAL RESEARCH MANAGEMENT											
Course Outcomes		Programme Outcomes (POs) Programme Specific Outcome (PSOs)							omes				
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	3	3	3	3	2	3	3	1	2	2	2	1
CO 2	2	3	3	2	2	2	3	3	1	2	2	1	1
CO 3	2	2	3	2	2	2	3	2	2	1	2	2	2
CO 4	2	2	3	3	2	3	2	2	2	1	1	2	2
CO 5	2	2	2	3	2	2	2	2	1	2	2	1	1
Hi	gh Corr	relation	3		Modera	ate Corr	elation:	2	Lov	v Correl	ation: 1		

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

STRUCTURAL BIOINFORMATICS

CODE: 23BI/PE/SB15

CREDITS: 5 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to develop new ways for analysing biological macromolecular data in order to address biological problems and discover new information
- to understand the factors that influence and determine the function of biological macromolecules
- to create general-purpose methods for manipulating information about biological macromolecules and the application of these methods to solve problems in biology
- to impart the importance of indeterminate protein structure data analysis to gain useful information in the view of research context.
- to discern the subcellular location of protein and to create the 3D protein map for further prediction of novel information about its regulation.

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL			
CO1	recognize the fundamental structural and functional concepts of DNA and RNA molecules	K1			
CO2	demonstrate the relativity and mechanisms of DNA molecules with protein molecules	K2			
CO3	utilise the knowledge on the structure and properties of protein molecules and identify them computationally using variety of tools	K3			
CO4	infer the functions, similarity, structural properties and their interactions in complex with other biological molecules using bioinformatics tools and databases	K4			
CO5	measure the importance of peptides to proteins in the body functions and apply for solving biological problems	K5, K6			
CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create					

UNIT	CONTENT	CL	Hrs	CO
1	Molecular Structures – An Introduction		12	1_5
1	1.1. Introduction to Molecular structures including genes and	K1_K3	12	1-5
	 gene products: protein, DNA, and RNA structure. structure representation, comparison of structures, visualisation, and modeling 1.2. DNA sequence and structures- complementarity, Chargaff's rule, other base pairs in sequence, reverse complementarity, palindromic sequences. 1.3. RNA sequences, types and structures – mRNA, tRNA, rRNA, miRNA, siRNA, circRNA, lncRNA, sg RNAs. 	K1- K3 K2- K4		
2	Nucloia agida	KO KO	12	15
2	2.1. DNA – chromosome structure and architecture, Intron- exon boundary, histones, euchromatin, heterochromatin, CpG islands, methylated DNA	K1, K2	13	1-5
	 2.2. Computational Structure prediction –RNA Structure determination methods, RNA structural refinement, predicting targets for inhibitory RNAs, Reading frames; Codon Usage analysis 	K3, K4		
	2.3. Translational and transcriptional signals, Splice site identification, Gene prediction methods and RNA fold analysis.	K5, K6		
3	Proteins		15	1-5
	 3.1. Protein sequences and structure fundamentals, Amino acids – types, single letter codes, essential and non-essential amino acids. 3.2 Protein sequence analysis-Compositional analysis 	K1, K2		
	Hydrophobicity profiles, Amphiphilicity detection, Moment analysis, Transmembrane prediction methods, Protein function prediction, motifs and domains, predicting binding site geometry and evolution.	K3, K4		
	3.3. Patterns and fingerprints. Point based and surface based binding site matching, Pattern based search using MeMe and PRATT); Motif-based search using ScanProsite and eMOTIF; Profile-based database searches using PSI-BLAST and HMMer.	K5, K6		
4	Structural Properties of Proteins		12	1-5
	4.1. Prediction of Coiled coils, Low complexity, non- globular, and disordered regions, Contact prediction, Alternative splicing	K1, K2		
	4.2. Target selection for diseases, Identification of Extreme environments, Functionally important residues, Local sequence motifs, Exons and domains, Mutations and their effect on structures	K3, K4		
	4.3. Protein-protein interactions, Protein evolution, Structure-function relationships in proteins	K5, K6		

UNIT	CONTENT	CL	Hrs	CO		
5	 Peptides and Proteogenomics 5.1. Peptide modelling - Signal peptides, natural peptides, Proteome - peptide repositories – PRIDE DB, peptide modeling, epitope and antibody structures. 	K1, K2	13	1-5		
	 5.2. Peptide- protein docking, Databases and tools for identifying protein- peptide interactions, network analysis, Tools and softwares to predict protein-protein and protein-peptide interactions. K5 K6 					
	5.3. Proteogenomics overview, Phenotype- Genotype, Gene expression, Proteogenomics approach to unravel proteoforms, Sequence centric proteogenomics, ProTIGY.					

Jenny Gu, Philip E. Bourne, Structural Bioinformatics, 2nd Ed., 2009.

Thomas E. Creighton, Proteins: Structures and Molecular properties, 2nd ed., WH Freeman Publications, 1992.

Akos Vegvari, Proteogenomics (Advances in Experimental Medicine and Biology), 1st ed., Springer Publications, 2016.

Stephen Neidle, Mark Sanderson, Principles of Nucleic acid Structure, 2nd ed., Academic Press, 2021.

BOOKS FOR REFERENCE:

Zoltan Gaspari, Structural Bioinformatics, Methods and Protocols, Springer publication, 2020. Forbes J. Burkowski, Structural Bioinformatics An algorithmic approach. Taylor and Francis Publication, 2009.

JOURNALS

Journal of Structural Biology BMC Structural Biology Computational and Structural Biotechnology Journal Journal of Molecular Biology

WEB RESOURCES

https://ball-project.org/ballaxy/ https://bio.tools/bioinfo3d https://computomics.com/services/megan6.html

PATTERN OF ASSESSMENT Continuous Assessment:

Total Marks: 50 Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/	K1 - K2	CO1-CO2	20
Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination			Total Marks: 100	Duration: 3 hours		
Sections	Cognitive levels	Marks	Pattern			
А	K1, K2	10	10 X 1 =10 (All questions to Objective type)	be answered,		
В	K3, K4	20	$10 \ge 2 = 20$ (Answers in abo	out 50 words)		
С	K4, K5	40	4 X 10 = 40 (Internal choice 600 words) Answers in about		
D	К6	30	2 X 15 = 30 (2 out of 4 ques Open choice) Answers in ab	tions to be answered - out 1200 words		
	Total	100				

Mapping of Course Outcomes (COs) to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subject Code: 23BI/PE/SB15												
	Course Title: STRUCTURAL BIOINFORMATICS												
Course Outcomes (COs)	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	2	3	2	3	3	1	1	1	2	3	2	1
CO 2	3	3	2	3	3	2	1	2	1	2	3	2	1
CO 3	3	3	3	3	2	2	2	2	1	2	2	1	2
CO 4	3	2	2	3	2	2	1	2	2	2	2	2	2
CO 5	3	3	3	2	3	2	1	1	2	2	3	1	2

High Correlation: 3

Moderate Correlation: 2 Low Correlation: 1

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023-2024)

ALGORITHMS FOR BIOINFORMATICS

CODE: 23BI/PE/AL15

CREDITS: 5 L T P : 4 1 0 TOTAL TEACHING HOURS: 65

OBJECTIVES OF THE COURSE

- to provide students with the basic knowledge of algorithms, computational biology and their advances in biology.
- to facilitate the students to attain skills in solving biological problems with algorithms, computational biology, sequence matching and learn its various biomedical applications.
- to develop skills to analyse algorithms related to bioinformatics
- to enable students with a particular focus on algorithms and data structures for search, comparisons, and motif discovery in strings.
- to instigate problem-solving skills through sorting and searching, algorithm design paradigms, and graph algorithms in the field of biological applications

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, student will be able to

COs	DESCRIPTION	CL			
CO1	understand the working of bioinformatics algorithms	K1			
CO2	describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it.	K2			
CO3	apply the algorithms and design techniques to solve problems	K3			
CO4	employ the important algorithmic design paradigms and methods of biomedical data analysis.	K4			
CO5	solve current biological research problems using computational approaches	K5, K6			
CL – Cognitive Level					
K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create					
UNIT	CONTENT	CL	Hrs	CO	
------	--	-------	-----	-----	
1	Introduction 1.1. Algorithms and Complexity. Definition, Biological Algorithms versus Computer Algorithms, Fast versus Slow Algorithms	K1-K4	10	1-5	
	 1.2. Algorithm Design Techniques Exhaustive Search Branch-and-Bound Algorithms Greedy Algorithms. Dynamic Programming algorithm. 1.3 Divide-and-Conquer Algorithms Machine Learning 	K2-K5			
	Randomised Algorithms, Big-O Notation.	K3-K6			
2	Restriction Mapping				
	2.1. Impractical Restriction Mapping Algorithms,	K1-K4	15	1-5	
	Practical Restriction Mapping Algorithm				
	2.2. Regulatory Motifs in DNA Sequences Profiles: The Motif Finding Problem Search Trees	K2-K5			
	2.3. Finding a Median String. String matching algorithm	K3-K6			
3	Sequence Alignment				
	3.1. Longest Common Subsequences - Global Sequence	K1-K4	15	1-5	
	Alignment- Local Sequence Alignment.				
	3.2. Graph Algorithms- Graphs and Genetics- DNA Sequencing Shortest Superstring Problem.	K2-K5			
	3.3. DNA Arrays as an Alternative Sequencing				
	Technique. Sequencing by Hybridization	K3-K6			
4	Clustering and Evolutionary Analysis				
	4.1 Gene Expression Analysis. Hierarchical Clustering - k-Means Clustering- Clustering and Corrupted	K1-K4	10	1-5	
	Cliques.				
	4.2 Evolutionary Trees - Distance-Based Tree Reconstruction, Reconstructing Trees from Additive	K2-K5			
	Matrices.				
	4.3 Evolutionary Trees and Hierarchical Clustering Character-Based Tree Reconstruction	K3-K6			
5	Pattern Matching				
	5.1. Combinatorial Pattern Matching Identical, Similar and Distant Repeats Finding methods. Exact Pattern	K1-K4	15	1-5	
	Matching				
	5.2. Keyword Trees and Suffix Trees. Heuristic Similarity	K2-K5			
	Search Algorithms				
	5.3. Hidden Markov Models, BLAST: Comparing a Sequence against a Database.	K3-K6			

Neil C Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algorithms. USA: MIT press, 2011. Pavel A. Pevzner. Computational Molecular Biology- An algorithmic approach. USA: MIT press, 2004.

BOOKS FOR REFERENCE

Miguel Rocha, Pedro G. Ferreira, Bioinformatics Algorithms: Design and Implementation in Python, Academic Press, 1st ed. 2018.

Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest. Introduction to Algorithms. New Delhi: Prentice Hall of India, 3rd ed. 2009.

Jeffrey J. McConnell. Analysis of Algorithm. New Delhi: Narosa Publishing House, 2007. Clark, John and Derek Allan Holton. A First Look at Graph Theory. Singapore: Singapore Publishers,1995.

Horowitz, Ellis, and Sartag Sahni. Fundamentals of Computer Algorithms. New Delhi: Galgotia Publications, 1994.

JOURNALS

Algorithms for Molecular Biology Journal of Computational Intelligence in Bioinformatics International Journal of Bioinformatics Research and Applications BMC Bioinformatics Bioinformatics Algorithms

WEB SOURCES

https://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/ https://www.bioinformaticsalgorithms.org/

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/MassSpec/masspec1.htm https://compeau.cbd.cmu.edu/online-education/bioinformatics-algorithms-an-active-learningapproach/

https://www.bioalgorithms.info/

PATTERN OF ASSESSMENT

Continuous Assessment Test:

Total Marks: 50

Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K1, K2, K3	20	2 X 10 =20 (2 out of 3 questions to be answered - Open choice) Answers in about 1000 words
В	K4, K5, K6	30	$3 \times 10 = 30 (3 \text{ out of } 4 \text{ questions to be answered } - Open choice)$ Answers in about 1000 words
	Total	50	

Other Components: Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs, open book tests/ Tests/	K1 - K2	CO1-CO2	20
Assignment/ Seminar/ Weblems	K3 - K4	CO3-CO4	20
	K5 - K6	CO5	10
	Total		50

End Semester Examination:

Total Marks: 100 Duration: 3 hours

Sections	Cognitive levels	Mark allocation	Pattern
А	K1, K2, K3	50	5 X 10 =50 (5 out of 6 questions to be answered - Open choice) Answers in about 1000 words
В	K4, K5, K6	50	5 X 10 =50 (5 out of 6 questions to be answered - Open choice) Answers in about 1000 words
	Total	100	

Mapping of Course Outcomes (COs)

to Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)

Semester	Subjec	ubject Code: 23BI/PE/AL15											
	Course	e Title:	ALGOI	RITHM	S FOR	BIOINF	FORMA	TICS					
Course Outcomes]	Progra	mme O	utcome	es (POs))		Prog	ramme	e Specif (PSOs)	ic Outc)	omes
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	3	3	2	2	1	1	1	2	3	2	1	3
CO 2	2	3	3	2	2	1	1	1	2	3	2	2	3
CO 3	1	3	3	1	3	2	1	1	3	2	1	2	3
CO 4	3	2	3	2	2	3	2	1	3	3	2	2	3
CO 5	3	2	3	2	2	3	2	2	3	3	3	3	3
Hi	gh Corr	elation:	3		Modera	te Corre	elation:	2	Low	Correl	ation: 1		

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

Postgraduate Elective Course offered by the Department of Bioinformatics for M.A. / M.Sc./ M. Com Degree Programmes

SYLLABUS

(Effective from the academic year 2023–2024)

INTRODUCTION TO BIOINFORMATICS

CODE: 23BI/PE/IB23

CREDITS: 3 L T P: 3 0 0 TOTAL TEACHING HOURS: 39

OBJECTIVES OF THE COURSE

- to become familiar with bioinformatics and how it's changing complex biological research
- to enable textual mining of biological literature and bioinformatics tools that are required to query biological data
- to understand the application of information technology in biological research
- to construct the phylogenetic trees to study the evolutionary concepts
- to implement the fundamental tools to predict the important sites of genes and proteins

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL			
CO1	better understanding of the bioinformatics concepts	K1			
CO2	emphasis the application of bioinformatics and biological databases to problem	K2			
	solving in real research problems				
CO3	understand the evolutionary concepts related to biological query	K3			
CO4	perform a complete analysis of the genes and protein	K4			
CO5	analyse the importance of protein structure and functions of enzymes in				
	restriction mapping.	K5, K6			
CL – Cognitive Level					
K1 –	Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – G	Create			

UNIT	CONTENT	CL	Hrs	CO
1	Introduction to Bioinformatics			
	1.1 Introduction to Bioinformatics, Classification of biological databases, Biological data formats, Application of Bioinformatics in various fields	K1-K4	8	1-5
	1.2 Introduction to single letter code of amino acids, symbols used in nucleotides	K2-K3		
	1.3 Data retrieval systems- Entrez and SRS	K3-K6		

UNIT	CONTENT	CL	Hrs	CO
2	Sequence and Structure analysis			
	2.1 Introduction to Sequence alignment. BLAST, Multiple	K1-K4	8	1-5
	sequence alignment			
	2.2 Structural Databases – PDB and other online tools	K4-K6		
	2.3 Visualizing tools – Rasmol, Pymol	K3-K6		
3	Phylogenetic analysis			
	3.1 Evolutionary analysis: distances, Cladistic and Phenetic	K1-K3	8	1-5
	methods			
	3.2 Clustering Methods. Rooted and unrooted tree representation	K3-K6		
	3.3 Bootstrapping strategies, Tools for Phylogenetic tree			
	construction	K4-K6		
4	Genomics			
	4.1 Genome - Gene finding methods	K1-K3	7	1-5
	4.2 Gene prediction tools	K3-K4		
	4.3 Repeat Sequence finder	K4-K6		
5	Proteomics			
	5.1 Proteomics - Protein structure – levels of organisation	K1-K3	8	1-5
	5.2 Protein separation techniques – SDS-PAGE	K4-K6		
	5.3 Restriction Enzymes and Mapping	K2-K3		

Pevsner and Jonathan. Bioinformatics and Genomics Functional. USA: John Wiley,2003. Baxevanis, Andreas D. and Francis B.F. Ouellette. Bioinformatics- A Practical Guide to the Analysis of Genes and Proteins. USA: John Wiley, 2001.

David W. Mount. Bioinformatics Sequence and Genome Analysis. INDIA: CBS Publishers, 2003.

BOOKS FOR REFERENCE

Baldi P. and Brunak S. Bioinformatics: Machine Learning Approach. USA: MIT Press, 2003.

Chen, Yi-Ping Phoebe. Bioinformatics Technologies. Germany: Springer, 2005.

Durbin R, S. Eddy, A. Krogh and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. USA: Cambridge University Press, 2005.

Higgins, Des and Willie Taylor. Bioinformatics – Sequence, Structure and Databanks – Practical Approach. UK: Oxford University Press, 2001.

Lesk, Arthur M. Introduction to Bioinformatics. UK: Oxford University Press, 2014.

JOURNALS

BMC Bioinformatics Bioinformatics Journal of Bioinformatics and Computational Biology Journal of Biomedical Informatics Journal of Integrative Bioinformatics PLoS Computational Biology

WEB SOURCES

http://bioinformaticsweb.net/tools.html https://www.bits.vib.be/index.php/training/122-basic-bioinformatics http://bioinformaticssoftwareandtools.co.in/ http://www.genscript.com/tools.html

PATTERN OF ASSESSMENT

Continuo	ous Assessment:	1	Cotal Marks: 50Duration: 90 minutes
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	K6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/	K1 - K2	CO1-CO2	20
Debate/ Seminar/ Weblems	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End seme	ester examination	1	Total Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 = 10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words
D	К6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086

Postgraduate Elective Course offered by the Department of Bioinformatics for M.A. / M.Sc./ M. Com Degree Programmes

SYLLABUS

(Effective from the academic year 2023–2024)

APPLICATIONS OF BIOINFORMATICS

CODE: 23BI/PE/AP23

CREDITS: 3 L T P: 300 TOTAL TEACHING HOURS: 39

OBJECTIVES OF THE COURSE

- to be familiar with the use of a wide variety of internet applications and biological database
- to access the fundamental biological databases and their retrieval, submission systems.
- to understand the basics of pharmacogenomics in the context of variability in drug response
- to recognize the application of information technology in immunology
- to introduce the basic concepts of using chemical structure databases

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL			
CO1	examine factors that affect drug response and the application of pharmacogenetics to drug development and drug treatment	K1			
CO2	apply the immunological data and to the sophisticated computational solutions available for immunological research	K2			
CO3	emphasis the application of bioinformatics and biological databases to problem solving in real research problems	К3			
CO4	investigate the immune cells types, activities and access the database for epitope prediction	K4			
CO5	ability to interpret the 2D and 3D chemical structures and access them computationally.	K5, K6			
CL – Cognitive Level K1 – Remember K2 – Understand K3 – Apply K4 – Analyse K5 – Evaluate K6 – Create					

UNIT	CONTENT	CL	Hrs	CO
1	Introduction to Bioinformatics			
	1.1. Classification of biological data, and different data formats	K1-K2	7	1-5
	1.2. Introduction to single letter codes of amino acids, symbols	K2-K3		
	used in nucleotides			
	1.3. Bioinformatics Perspectives on Human Diseases	K3-K6		
2	Bioinformatics databases			
	2.1. Overview of Biological Sequence Databases - NCBI, EMBI, DDBJ	K1-K3	8	1-5
	2.2. Sequence Retrieval Systems (Entrez & SRS), Sequence	K3-K4		
	Submission Methods and Tools (Sequin, Sakura, Bankit)			
	2.3. Finding Scientific Articles Using PubMed, Identification of	K4-K6		
	disease genes, OMIM database			
3	Pharmacogenomics			
	3.1. Introduction to Basic Concept of Pharmacogenomics,	K1-K3	8	1-5
	Application and Challenges in Pharmacogenomics,			
	Personalized Medicine			
	3.2. Genetic Variation, Types of Variants, SNPs,	K3-K6		
	Insertion/Deletions	T T 4 T T 6		
	3.3. Databases - Pharmacogenomics Knowledge Base	K4-K6		
	(PharmGKB)			
4	Computational Immunology		0	
	4.1. Introduction to Immune System - Adaptive and Innate	K1-K3	8	1-5
	Immunity, Cells of the Immune System	V2 V4		
	4.2. Major Histocompatibility Complex (MHC) its	КЭ-К4		
	Polymorphism, Principles of B-cen and 1-cen Ephope Dradiation			
	4.3 Databases in Immunology IMGT immunoinformatics	K1-K6		
5	Applications of Chaminformatics Tools in Dwg Design	K 4 - K 0		
3	5.1 Definition of drugs - 2D and 3D Molecular Structures	K1-K3	8	1-5
	5.2 Searching for Chemicals on the Internet (PubChem	$K_{1}-K_{5}$	0	1-5
	eMolecules)	124-120		
	5.3 Chemical structure drawing tools	к2-к3		
	sist chemical structure drawing tools			

Darren R. Flower. Bioinformatics for Immunomics (Immunomics Reviews). New York:Springer-Verlag, 2010.

Abul K. Abbas, Andrew H. H. Lichtman, and Shiv Pillai. Cellular and Molecular Immunology. USA: Elsevier, 2017.

Andrew R. Leach, Valerie J. Gillet. An Introduction to Chemoinformatics.UK: Springer, 2007.

Russ B. Altman, David Flockhart, David B. Goldstein. Principles of Pharmacogenetics and Pharmacogenomics. UK:Cambridge University Press, 2012.

BOOKS FOR REFERENCE

Christian Schönbach, ShobaRanganathan, and Vladimir Brusic. Immunoinformatics (Immunomics Reviews) USA: Humana Press, 2010. Kenneth Murphy. Janeway's Immunobiology, UK: Garland Science, 2014. Bunin, Barry A. Dordrecht. Chemoinformatics: Theory, Practice, and Products.UK: Springer, 2010.

JOURNALS

The Pharmacogenomics Journal Pharmacogenomics and Personalized Medicine Pharmacogenetics and Genomics **Immunoinformatics BMC** Genomics Journal of Computational Biology Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery International Journal of Chemoinformatics and Chemical Engineering **BMR** Bioinformatics & Cheminformatics

WEB SOURCES

http://www.imgt.org/Immunoinformatics.html http://rsob.royalsocietypublishing.org/content/3/1/120139 http://ghr.nlm.nih.gov/handbook/genomicresearch/pharmacogenomics https://www.pharmgkb.org/ http://cheminformatics.org/ http://www.emolecules.com/info/molecular-informatics

PATTERN OF ASSESSMENT **Continuous Assessment:**

Continuo	us Assessment:		Total Marks: 50 Duration: 90 minutes		
Sections	Cognitive levels	Marks	Pattern		
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)		
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)		
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words		
D	К6	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words		
	Total	50			

Duration · 90 minutes

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/ Assignment/ Mini projects/ Debate/ Seminar/ Weblems	K1 - K2	CO1-CO2	20
	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End semester examination

Total Marks: 100 Duration: 3 hours

Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words
D	K6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

Postgraduate Elective Course offered by the Department of Bioinformatics for M.A. / M.Sc./ M. Com Degree Programmes

SYLLABUS

(Effective from the academic year 2023–2024)

COMPUTER AIDED DRUG DESIGN

CODE: 23BI/PE/CD23

CREDITS: 3 L T P: 3 0 0 TOTAL TEACHING HOURS: 39

OBJECTIVES OF THE COURSE

- to understand the general pathway for drug discovery and development
- to define new methodologies for analysis of ligands with their bound protein target
- to know the guidelines and regulations imbibed by fda
- to gain an in-depth overview of methods and techniques applied in computer assisted drug design (cadd)
- to learn about computer-aided drug design, safety evaluation, bioavailability and clinical trials

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL				
CO1	identify the key elements in drug and explain new methodologies for drug design	K1				
CO2	describe the role and importance of the various disciplines involved in the different phases of drug discovery and development	K2				
CO3	review and evaluate preclinical and clinical pharmaceutical studies	K3				
CO4	follow new ideas in utilizing main approaches of ligand screening methods	K4				
CO5	examine the pharmacodynamic and pharmacokinetic properties for small					
	molecules	K5, K6				
	CL – Cognitive Level					

K1 – Remember | K2 – Understand | K3 – Apply | K4 – Analyse | K5 – Evaluate | K6 – Create

UNIT	CONTENT	CL	Hrs	CO
1	Drug Discovery and Development			
	1.1. Drug Development Process Overview - The Changing	K1-K2	7	1-5
	Landscape of drugs development	K2-K3		
	1.2. Drug Discovery Phases			
	1.3. Preclinical Phase studies	K3-K6		

UNIT	CONTENT	CL	Hrs	CO
2	Regulations in Drug Discovery			
	2.1. FDA regulations on Drug Development	K1-K3	8	1-5
	2.2. Indian Regulatory Systems	K3		
	2.3. Ethical Considerations and Special Populations	K4-K6		
2	Drug Torget Identification			
3	2.1. Computational information used to identify and validate small	V1 V2	0	15
	molecule drug targets	K1-K3	0	1-3
	3.2. Databases for Drug targets, Retrieving protein structure and	K3-K6		
	visualisation	17 4 17 6		
	3.3. Target Discovery and Validation, Active Site Prediction	K4-K6		
4	Ligand Based Drug Design			
	4.1. Screening of lead molecules - Natural products and their	K1-K3	8	1-5
	analogues			
	4.2. Chemical Databases – PubChem, Drug Bank	K3-K4		
	4.3. Chemical file formats, Retrieving drug molecules	K3-K6		
5	Pharmacokinetics and Molecular Docking			
	5.1. Pharmacokinetics - ADME Prediction	K1-K3	8	1-5
	5.2. Pharmacodynamics	K4-K6		
	5.3. Molecular Docking - Scoring and evaluation	K3-K6		

Claudio N. Cavasotto. In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications. USA: Taylor & Francis Group, 2017. Charifson P S. Practical Application of Computer Aided Drug Design. New York:Dekker, 1997.

BOOKS FOR REFERENCE

Andrew R. Leach. Molecular Modeling: Principles and Applications. USA: Prentice Hall, 2007. Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to applications. USA: Academic Press, 2002.

Alan Hinchliffe. Molecular Modelling for Beginners. USA: John Wiley & Sons, 2008. Luca Monticelli, Emppu Salonen. Biomolecular Simulations: Methods and Protocols. USA:Humana Press, 2016.

JOURNALS

Journal of Molecular Graphics and Modelling Journal of Computer-Aided Molecular Design Current Computer Aided-Drug Design

WEB SOURCES

http://accessengineeringlibrary.com/browse/computer-aided-drug-design-anddeliverysystems http://www.southernresearch.org/life-sciences/lead-discovery-and-optimization/medicinalchemistry/computational-chemistry http://www.ch.ic.ac.uk/local/organic/mod/

PATTERN OF ASSESSMENT Continuous Assessment:

Total Marks: 50 Duration: 90 minutes

Sections	Cognitive levels	Marks	Pattern
А	K1, K2	5	5 X 1 =5 (All questions to be answered, Objective type)
В	K3, K4	10	5 X 2 =10 (Answers in about 50 words)
С	K4, K5	20	2 X 10 = 20 (Internal choice) Answers in about 600 words
D	Кб	15	1 X 15 = 15 (1 out of 2 questions to be answered - Open choice) Answers in about 1200 words
	Total	50	

Other Components:

Total Marks: 50

Categories of other components	Cognitive levels	Course Outcome	Marks allocation
Quiz/MCQs/open book tests/ Tests/ Assignment/ Mini projects/ Debate/ Seminar/ Weblems	K1 - K2	CO1-CO2	20
	K3 - K4	CO3- CO4	20
	K5 - K6	CO5	10
	Total		50

End seme	ester examination	,	Total Marks: 100 Duration: 3 hours
Sections	Cognitive levels	Marks	Pattern
А	K1, K2	10	10 X 1 =10 (All questions to be answered, Objective type)
В	K3, K4	20	10 X 2 =20 (Answers in about 50 words)
С	K4, K5	40	4 X 10 = 40 (Internal choice) Answers in about 600 words
D	К6	30	2 X 15 = 30 (2 out of 4 questions to be answered - Open choice) Answers in about 1200 words
	Total	100	

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI 600 086

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 -2024)

TRANSLATIONAL BIOINFORMATICS

CODE: 23BI/PI/TB24

CREDITS:4

OBJECTIVES OF THE COURSE

- to develop a quantitative understanding of recent and emerging fields of bioinformatics
- to provide a platform for knowledge on imminent concepts to serve the present societal requirements
- to provide a better understanding of data and its applications in bioinformatics
- to impart a forum for disseminating the field of medical and biological image analysis
- to illustrate the information technology-driven efficiency to integrate real world context in public health informatics

COURSE LEARNING OUTCOMES (COs)

On successful completion of the course, students will be able to

COs	DESCRIPTION	CL		
CO1	apply knowledge of bioinformatics data exploration	K1, K2		
CO2	analyse, interpret and appraise bioinformatics research data	K3		
CO3	critically appraise the key concepts and conclusions from disease models	K4		
CO4	infer functional association networks	K5		
CO5	justify the use of genome scale networks in clinical settings	K6		
CL – Cognitive Level				

K1 – Remember | K2 – Understand | K3 – Apply | K4 – Analyse | K5 – Evaluate | K6 – Create

UNIT	CONTENT	CL	Hrs	CO
1	 Introduction 1.1. Overview of bioinformatics and principle applications: Sequencing, Microarray, 'omics' fields, Systems biology, data mining. 1.2. Relationships to diseases and health. Data-driven Disease Biology. 1.3. Translational Bioinformatics: Past, Present, and Future. 	K1-K3 K2-K4 K5-K6		1-5

UNIT	CONTENT	CL	Hrs	CO
2	Biomedical Knowledge Integration			
	2.1. Data, Molecules, and Diseases, Computational Causal Analytics, Transforming patient care.	K1-K3		1-5
	2.2. Omics based approaches in diagnosis and treatment. Health informatics and the influence on the delivery of healthcare.	K2-K4		
	2.3. The electronic patient record and the importance of coding healthcare delivery consultations. The management of multi-dimensional and heterogeneous data sets.	K5-K6		
3	Biomedical Image Analysis			
	3.1. Picture archive communication system (PACS) design and implementation; clinical PACS-based imaging informatics	K1-K3		1-5
	3.2. Elemedicine/teleradiology; image content indexing,	K2-K4		
	image data mining; grid computing in large-scale imaging informatics	K5-K6		
	3.3. Image-assisted diagnosis, surgery and therapy.			
4	Disease Informatics			1-5
	4.1. Small molecules and diseases. Cause and treatment of diseases. The Small Molecule Pathway Database (SMPDB). Toxin and Toxin-Target Database (T3DB), Poly Search and Metabolite Set Enrichment Analysis.	K1-K3		
	4.2. Protein interaction and diseases - molecular and genetic	K2-K4		
	 4.3. Protein misfolding problems. Network based approaches in complex diseases. 	K5-K6		
5	Biological Knowledge Assembly and Interpretation			1-5
	5.1. Gene Set-Wise Differential Expression Analysis, Gene set enrichment analysis.	K1-K3		
	5.2. Differential coexpression analysis. Statistical			
	inferences- p values, hyper parametric test, Bonferroni corrections, Benjamini Hochberg	K2-K4		
	corrections.	K5-K6		
	5.5. False drug discovery rate.			

Arjen Hommersom, Peter JF Lucas, 2015. Foundations of Biomedical Knowledge representation: Methods and Applications, 1st ed., Springer Publications, 2015. Vitali Sintchenko, Infectious Disease Informatics, 2010th ed., Springer Publications, 2009. Hsinchun Chen, Daniel Zeng, Ping Yan, Infectious Disease Informatics: Syndromic Surveillance for Public Health and Bio-Defence. 2010th ed., Springer Publications, 2010. Geoff Dougherty, Medical Image Processing: Techniques and Applications, 2011th ed., Springer Publications, 2011

BOOKS FOR REFERENCE

Maricel Kann (Ed), Fran Lewitter (Ed), PLOS Computational Biology: Translational Bioinformatics, 2016.

Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second Edition) 2009.

WEBSITE

http://web.stanford.edu/~hastie/pub.html

PATTERN OF ASSESSMENT

End Semester Examination:

Total Marks: 100 Duration: 3 Hours

Section	Cognitive Level and Allocation of Marks	Marks per Section	No of Questions to be answered	No. of Questions to be set
А	K1(10) K2(10)	20X1=20	10 K1 questions 10 K2 questions	10 K1 questions 10 K2 questions
В	K3(10)	10X2=20	10 K3 questions	10 K3 questions
С	K4(15)	3X5=15	3 K4 questions	4 K4 questions
	K5(15)	3X5=15	3 K5 questions	4 K5 questions
D	K6(30)	2X15=30	2 K6 questions	3 K6 questions
	Total	100	38	41

End semester examination

Total Marks: 100

Duration: 3 hours

Section A - $10 \times 1 = 10$ (All questions to be answered, Objective type)

Section B - 10 X 2 = 20 (All questions to be answered, Answers in about 50 words)

Section C - 4 X 10 = 40 (Internal choice - Answers in about 600 words)

Section D - 2 X 15 = 30 (2 out of 4 questions to be answered, Answers in about 1200 words)

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI 600 086

M.Sc. DEGREE: BIOINFORMATICS

SYLLABUS

(Effective from the academic year 2023 - 2024)

JAVA FOR BIOINFORMATICS

CODE: 23BI/PI/JV24

CREDITS:4

OBJECTIVES OF THE COURSE (COs)

- to understand the concepts of object oriented programming.
- to learn about the control structures, class with attributes and methods used in java
- to understand the application of java in biological research
- to automate the tasks of parsing the different biological data formats, implement data structures and algorithms for common genomics and proteomics analysis
- to facilitate the code reuse for the standard implementation of external scripts and applications in biological data analysis.

COURSE LEARNING OUTCOMES

On successful completion of the course, the student will be able to:

COs	DESCRIPTION	CL	
CO1	understanding of the structure of the java programming language.	K1, K2	
CO2	apply the basic principles of creating a java program.	K3,K4	
CO3	differentiate various methods used in java	K4	
CO4	comprehend the relevance of java in biological applications	K5	
CO5	decipher the uses of biojava pipelines in bioinformatics	K6	
CL – Cognitive Level			

K1 – Remember | K2 – Understand | K3 – Apply | K4 – Analyse | K5 – Evaluate | K6 – Create

UNIT	CONTENT	CL	Hrs	СО
1	 Introduction to Java 1.1. Java Basics: Importance and features of JAVA, Lexical elements of JAVA 1.2. Data types and Control structure, Program structure, Arrays 1.3. Command line input handling, OOPS, String Handling. 	K1-K3 K2-K4 K5-K6		1-5
2	File Handling 2.1. Package, Exception Handling and File Handling: Package concept, working with util package	K1-K3		1-5

UNIT	CONTENT	CL	Hrs	СО
	2.2. Built-in Exceptions, Exception Handling, User Defined	K2-K4		
	Exception 2.3. Streams in Java: FileInputStream, FileOutputStream, DataInputStream, DataOutputStream, Serialization.	K5-K6		
3	 JDBC and Applets 3.1. JDBC, Steps to connect database, Classes and Methods for Database connectivity and Data Manipulation 3.2. Applets: Importance of applets, Steps to build an applet, Applet class methods, applet life cycle 3.3. Creation and execution of applets, Graphics class methods. 	K1-K3 K2-K4 K5-K6		1-5
4	 Class and objects 4.1. Defining a class and Creating objects – Accessing class members 4.2. Constructors – Method overloading – Static members – Nesting of Methods – this keyword – Command line input. 4.3. Inheritance: Defining inheritance and types of inheritance 	K1-K3 K2-K4 K5-K6		1-5
5	 Biojava 5.1. Concepts, Installation, Symbols &SymbolList, DNATools, MotifTools, RNATools, DNA to RNA conversion 5.2. Translation of DNA sequence to Protein sequence, proteomics classes: Calculate Mass and isoelectric point 5.3. Sequence I/O basics, Parsing, remote pdb file access 	K1-K3 K2-K4 K5-K6		1-5

E. Balagurusamy, "*Programming with Java*", India, Tata McGraw Hill, 5th Edition, 2014.

Sagayaraj, Denis, Karthick and Gajalakshmi, "Java Programming for Core and advanced learners", India, Universities Press Private Limited 2018.

Herbert Schildt. Java – A Beginner's Guide, 7th Edition, McGraw Hill, 2017.

Andreas Prlic, Andrew Yates, Spencer E. Bliven, et al., BioJava: on open-source framework for bioinformatics. Bioinformatics. 28(20): 2693-2695. https://www.biojava.org. 2012.

BOOKS FOR REFERENCE

Bert Bates , Kathy Sierra, "Head First Java: Your Brain on Java - A Learner's Guide1",1st Edition, O'Reilly Media, 2022.

Herbert Schildt , "Java: A Beginner's Guide ",8th Edition, McGraw Hill, 2020. Joshua Bloch , "Effective Java", 3rd Edition, Addison-Wesley Professional, 2018.

Eric Freeman, Elisabeth Robson, "Head First Design Patterns: Building Extensible and Maintainable Object-Oriented Software", 2nd Edition, O'Reilly Media, 2020.

JOURNALS

Java Development Journal Java World Java Revisited Journal of Bioinformatics and Computational Biology

WEB RESOURCES

https://nptel.ac.in/courses/106105191/ https://www.udacity.com/course/java-programming-basics--ud282

End semester examinationTotal Marks: 100Duration: 3 hours

Section A - 10 X 1 =10 (All questions to be answered, Objective type) Section B - 10 X 2 =20 (All questions to be answered, Answers in about 50 words) Section C - 4 X 10 = 40 (Internal choice - Answers in about 600 words) Section D - 2 X 15 = 30 (2 out of 4 questions to be answered, Answers in about 1200 words)